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A New Method for Solutions of Differential Equation by
Fast Fourier Transform

H. Arabshahi
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Abstract: A new numerical method has been carried out to solve the differential equation using Fast Fourier
Transform (FFT). The new algorithm has been accompamed by a numerical example. Firstly, we solve a Cauchy
problem for an elastic vibrating system using the fimite difference method. Then with the values of the
approximate solution obtained in the equidistant points from the interval (0, 1), we shall find an interpolation
polynomial using FFT. Also we study, the approximation of the numerical solution and stability of the
difference scheme which correspond of a second-order differential equation.
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INTRODUCTION

Let on the interval [0, 2m], 2N equidistant points,
X = O, Xy, .., Xonp %o = 270 A periodical function f: R - R
with the period T = 27, attain the given values, £ = f (x) at
the points x, j€{0, 1, ..., 2N-1}. The interpolation
trigonometric polynomial of the function f is defined by
the equality:

P,= ﬁ +§ (Akcos (1@()+Bksin {kx)+
2 & (1)

%cos (Nx)

Where:
1 2M-1
A = Eijcoskxj,kE fo.1, ..., N}

j=0

(2)
139
BkZEZstmkxj,kE{l,Z, s N-1}

1=0

To halve the computations number for calculation
coefficients Ay, B, on separates the components of f, with
even index from those with odd index and on defines
(Look et al., 1998):

yk =, +if,, . ke {0,1,..., N-1} (3)

With Cooley and Tukey algorithm, we calculate the
sumns of the form:

m L 2 .
y,=3 G, mexp(N}_]e (0,1,..N-1} 4
k=0

21

Where:

N1 _
C=—Yy.o9 je{o01, (5)
k=1

z| =

Interpolation of reticular function: Consider a steel beam
which is simply supported at the ends of length 1 =25 ¢cm
and diameter d= & mm. At lis halfis placed a weight
G = 3 daN which is acted by o force varying harmonically
with time:

F(t) = Fy.sinpt

Where:
F, = 5daN
p = 100radsec™

The elastic constant:

_ 48EIL, _ 48x2.1x10°x0.02
I’ 25°

k =129 daNcm

The equation of motion then becomes (Brennan
1988):

F. i+ku=F, sinpt (6)

g

Where, g is the acceleration of gravity (Chen et al.,
1998). The circular frequency is defined by:

k-g_ }129'981 = 205.4rad sec !
P 3 (7

And the period 1s:

o =
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T=P- 2 _ 40350 (&)
® 2054

Multiplying Eq. & with ratio P/g we obtain:

U+m'u = gsinpt, q=% (9)

and introducing the numerical values we get Cauchy
problem:
+205.4° u =1635 sin100t

U©) =0 (10)

The complete solution of the problem Eq. 9 is
composed of 2 functions (Chattopadhyay and Queisser,
1981). The first of these represents a natural vibratory
motion:

u (t) = -B-%- sinewt = A, sinmt (11)
)

The second vibratory motion is due to exciting force

F(t):
u,(t) = zq —-sinpt = A, sinpt (12)
@-p
With the period:
2:2_75:2_7::0.06560 (13)
p 100

The interpolation polynomial will be the sum:
P(t) = P,(t) + Py(t) (14)

Where, P,, P, are the polynomials which correspond
to u,, u,, respectively. For the natural vibratory motion
with T, = 0.03, we change the interval [0, T,] in the interval
[0,1] by the relation: x = t/T,. Let on the interval [0, 1],
N = 2’ equidistant points with the step of division h = 1/8.
We solve the problem:

i, +ery, =0 1s)
u®=0 =0

by fimte difference method and the results of calculations
are entered in the appropriate rows of Table 1. In
accordance with the difference scheme for the Eq. 14 and
15 we have (Makino et al., 2001):

_u {tth)-2u (t)+u(t-h)
h 2

u'(t)

Table 1: Finitr difference method and the results of calculations

I 0 1 2 3 4 5 6 7
X5 0 1/8 2/8 3/8 48 58 6/8 78
uy 0 -0.017  -0.024  -0.017 0 0.017 0.024 0.017

and from Taylor’s formula:

u(t+h) =u{t)+ hu'{t)+ h—;u”(t) +

(L R
B (t)+zu &)

u(t—h)=u(t)+hu(t)+ h—;u’(t) +
W)

Hence:
_ _ 2
u{t+h) 21}11gt) +u{t —h) —u"(t) + I;'

(@€ +uPE,)), ue ' ((0,1)

where, & ,&, e (t— h,t+h) and C* (0, T) is the set of the
function with the derivatives to four order continuous.
From Darboux property of function u there is E€[£,, £;] for
which (D1 and Brennan, 1991 ):

u® E)u®E,)

u® () = 5

Hence:

u(t+h)-2u(t)+u(t—h)
h? B

. E )
u(t)+ 1211 &)

In order to demonstrate this property for the
difference problem which corresponding to Eq. 14 we
consider in the interval [0, 1], N = 2° equidistant peints, t,,
n=20,1,2 ... N, t=0t,=1.Let A be this partition of
[0, 1] with the step h and we shall denote: u, =u(t),
B = w’ and @, = gsinpt,. Where:

M+ Bu, .,ne {1,2,...N —1}

h2
Lu=u(®)
u, -
T (]6)
(pn
f=40,0<t<1
0
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In accordance with the scheme is stable if for any

there is a unique solution and:
[ul=clt]
An equivalent schema for Eq. 16 is:

u, =(2- th)un -u,_, + hZ(p

u, =0

n

u —u, =0

Now we define:

_BKH* -1l hi
, [ |_[2-B0 A]fu ) he,
un 1 0 _un—l O

=R,z +thp_,

(17)

(18)

(19)

Let, Y be the bi-dimensional space with u,, p,£Y and

we define the norm:

a

?  maxdlal o)

Y

(20)

Since |R,/=1 IR, JF~+ we shall define a norm which

depends on h-step of partition of the interval [0, 17]:

a

b

oy
=max |a|,7
¥, h

Relationship between these norms 1s:

a 1 0 all g a
bl Lih —1h bl TLb ),
Where:
1 0
S=
L/h I/h}
We shall prove that:

[, =lsTs7,

for any linear operator T. Indeed:

2D

(22)

(23)

23

b

o ] ()

Then in accordance with Gonze et al. (2002), we
obtain from the definition of the norm in Y, and Eq. 23:

Th Y

xl,  [sTsesw)
T — ho— ¥
R
”STS”VH
:nmx;;;;;JL:HSTSﬂ\
S :

and thus, Eq. 23 is true. Also we have:

IRl =5, e
" T
Recall that for any matrix T,
T = {tn t12}
t21 t22
We have:
T, =masc [ty | o] # £ (25)
Hence 1f:
2
SR8 _{ 1 0 }{2——Bh —1}{1 0 }
1/h -1/h 1 0|1 -h
Or:
2
SRﬁq_F—Bh h}
-Bh 1
|sR, 87|, =max{[1-Bh*|+ h,Bh+1} =Bh+1
and from Eq. 25;
IR . =[SR; S| =H(S.Rh STV <|sR, 7 <

(1+Bh)N = E T ¢ o
because Nh = 1. From the Eq. 25:

Zn = Rh (han—z + pn72h) + pnflh
= Rizn—z + h(Rh'pn—Z + pn—l)
=R}z, + (R;‘lpEl ot pn_l)h
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We define:
ol = maxu,| = max |z,
And:
[l =mas o, maxp, |
Then
uls, =max]z,

- mnax‘R;zu + h(RﬁflpEI TR bt pn_l)‘

< max (26)

0=n=H

R [ (7| + Nhmax|p], )=

(]l )

'2”fh H < 2¢ ”fh H

full, <]

Ry

s|

R}

Because:

Therefore, there is a constant C = 2.e® such that 1s
fulfilled and the difference scheme for Cauchy problem 1s
stable.

<||£

P, zo| <[]

-

24
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