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Abstract: In this study, researchers describe and implement a parameter free adaptive algorithm for radial basis
function mterpolation of real valued bump functions. The method is based on thin plate splines which are
known for their good approximation properties. Interpolation points are added and coarsened based on

residuals computed on a finer discretization. Numerical examples in one dimension are presented to show the

effectiveness of the method.
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INTRODUCTION

If X is a finite set of scattered data points in R* and if
f = R*2R is a function known only on X, then an
umportant practical problem 1s that of finding a smooth
function that interpolates f and provides to good
approximation to f near X. To this end, mterpolation by
Radial Basis Functions (RBFs) has become a very
powerful tool in multivariate approximation theory. Tn the
past two decades, radial basis functions have been used
extensively in fields like the numerical solution of
partial differential equations like m Franke (1998) and
Lorentz (2003 ).

They have also been applied in non-uniform
sampling, mathematical finance, computer graphics and in
optimization. The efficiency of the RBF mterpolation on
scattered and uniform data has been illustrated by several
numerical examples and theoretical results by Wendland
(2005) and Fasshauer (2007).

For problems with steep gradients, singularities and
other topological changes, it is natural to use adaptive
methods to reduce the error of the interpolation and
approximation. Adaptive methods have been implemented
for RBF mterpolation by Behrens and Iske (2002), Sarra
(2005) and Driscoll and Heryudono (2007) amongst others.

Although, radial basis like
Gaussians and multiqudratics have very good
approximation properties, they have a shape parameter

several function

and numerical experiments m Fasshaver (2007) and
elsewhere show how the choice of the shape parameter
has profound mfluence on both the accuracy and

numerical stability of the solution of an interpolation
problem. On the other hand, certam RBFs like radial
powers and swuface splines have the advantage of
bemng shape parameter free. This means that one
does not need to worry about the choice of a good
shape parameter.

In Driscoll and Heryudono (2007), an adaptive
residual subsampling method based on radial basis
functions was proposed and implemented. In their
research, they used multiquadrics which contain a shape
parameter and they show how the value of the shape
parameter affects the accuracy of their method To this
end, they had to adaptively modify the shape parameter
during sumnulation

In this study, the researchers will use a parameter
free radial basis function, the thin plate splines (a type of
surface splines), to implement an adaptive radial basis
function mterpolation scheme for bump finctions and
show how good results can be obtained without the need
of adapting the shape parameter. A bump function is a
function that 1s non-zero only on a compact subset of the
interior of the domain of definition. The utility of thin plate
splines interpolation in this context was lughlighted by
Gutzmer and Tske (1997) and Kaser (2003).

Radial basis function interpolation: Consider a data
vector f = (f (x,),..f ()" € R® functicn values, obtained
from a function f : R*R at a scattered finite point set X =
{x,...x} = R, d=1. Scattered data interpolation requires
computing an appropriate interpolant s R*—R
satisfying;
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s(x)=f{x)forall 1 <j<n ()

The radial basis function interpolation method
utilizes a fixed radial function ¢: [0, <] — R so that the
mterpolant s in Eq. 1 has the form:

cP! (2)

m-1

s0=3 efxx[)rpeo, p

Where |l -llis the Buclidean norm on R*and p%., is the
space of all polynomials in d variables of degree at most
m-1 (order m), where m = m (¢) 1s known as the order of
the basis function ¢. Possible choices for ¢ along with
their orders are shown i Table 1. When m = 0, the
interpolant s in Eq. 2 has the form:

s(x):i: ch])(Hx—xJ H) (3)

1=1

Using the interpolation conditions Eq. 1, the
coefficients ¢ = (c,,..., ¢,)" of s in Eq. 3 can be obtained by
solving the linear system:

Ac=f
A:(¢

X, —X ) e R™"
<, jzn

Where for m=>0, the interpolant s in Eq. 2 contains a
nonzero polynomial part, yielding q additional degree of
freedom where ¢ is the dimension of the polynomial space
Pi,. These additional degrees of freedom are usually
eliminated using ¢ vanishing moment conditions:

n

Y ep(x,)=0, forallpeP)

-

“4)

In total, this amounts to solving the (n + q)*(n + q)
linear system:

pT 0j)ld} lo

Where:

A:(d) X, —X ) R™"

=i jzn
_ o nxy _

P=((x;) )msﬂ‘akm eR™ and d=(d,)|of <m

Table 1: Radial Basis Functions (RBFs), their parameters and order
Shape
RBF b (1) Parameters parameter Order
Surface splines  1* for ke 2N keN k
Mog(r) for ke2N  keN - k

Gaussians exp (- £1%) - g 0
Multiquadrics (1 +2Y2y v=0, veN £ I+l
Inverse (1 +er?y v<0 g 0

multiquadrics
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for the coefficients of the polynomial part in Eq. 2. The
important case is the thin plate spline (surface splines
with k = 2). In this case, for one space dimension, we have
¢ (1) =1 log T with:

m=1landq=dimP =2
so that;

(6)

s(x):zn: ¢; ‘x—xj‘zlog‘x—xj‘+ d, +dx
j=1

This requires us solving an (n + 2) % (n + 2) linear
system to obtain the coefficients c,,...c, dy d,. The
effectiveness of this interpolant for bump functions was
shown by Bejancu (2001). We note, however that
parameter free radial basis functions will not be able to
achieve the spectral convergence rates that are possible
with other basis
multiquadrics. Moreover, the interpolation matrices are
larger m tlus case because of the polynomial part
(Fasshauer, 2007).

functions such as Gaussians and

The adaptive interpolation method: We will use the
residual subsampling of Driscell and Heryudono (2007)
coupled with the strategy of Kaser (2003) to provide a
parameter free adaptive interpolation method.

A function f (x) defined on an interval (a, b) is picked
and an mitial discretization giving a set X, of n, equally
spaced points 1s obtamed. A thin plate spline interpolant
s(x) is then obtained for the function f(x). The
interpolation error is then computed at the set M, of n,™
midpoints of the subintervals. A midpoint m; € M,
becomes an interpolation point if the error at m; exceeds a
threshold value ¥y and an interpolation x g X is
coarsened or removed 13 1t lies between two points in M,
whose error 15 below a smaller threshold ..

This gives a new discretization X, of theinterval (a, b).
This algorithm is repeated and further discretizations 3,
X, X,,.... are generated until no further points are added
or coarsened. For the case of thin plate spline
interpolation, the local error estimate at x € X is according
to Wu and Schaback (1993) of the form:

fix)—s(x)<C. h ™

Where C>0 is a constant depending on f and (for
some radius p=0:

h Az ()

]
-z <p

1s the fill distance of X around x, with:
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dy ()= "=Vl

being the Huclidean distance between the pointy and
the set X. As shown by Wu and Schaback (1993),
the (Eq. 7) around any
interpolation point is accomplished by reducing the
distance function;

reduction in the error

— —V
de ="Vl

n a neighbourhood of x,. This shows that adaptivity can
indeed reduce the mnterpolation error.

Numerical examples and discussions

Example 1: We will use a simple finction f{x)
exp(-40x%) on the interval [-1, 1] with @, = 1.5%107° and
B = 1x107°. The results are shown in the Table 2 where
cond(A) denotes the of the
mterpelation matrix, E, denotes the error in the infimty
norm, na the mumber of points added, ne the number of

condition number

Table 2: Node distribution, error and condition number for Example 1

points coarsened and n denotes the number of
interpolation points. The method converges in 8 iterations
and the errors are quite small. Moreover, the method is
stable looking at the condition numbers of the
interpolation matrices.

These results are similar to the multiquadric method
while the conditioning of the interpolation matrix is even
better. The plots for f{x), the node distribution at the final
iteration and the errors are shown in Fig. la-c,
respectively. We observe that the method adaptvely
places more interpolation points close to where the
function has sharp features.

We also note that when interpolating on 111 equally
spaced points the error will be 1.1656x107" with the
condition number 2.6166x10° which shows that the
adaptive method gives superior results for the same

number of mterpolation points.

Example 2: We will consider the bump function given
by the poduct (Bejancu, 2001):

Table 3: Node distribution, error and condition number for Example 2

Iterate  n E. Cond(A) na ne Iterate n E. Cond(A) na ne
1 013 3.4475+10° 5.0692x107 12 0 1 013 5.2124x10° 1.5458x1(7 12 0
2 025 1.0480x107 3343610 22 0 2 025 5.3190%10° 9.3359x10° 22 0
3 047 1.4049x103 2.1967=10¢ 30 2 3 047 6.3139x104 5.5422%10% 38 0
4 075 2.5401x10" 1.0873x10° 26 1 4 085 8.7013%10% 3.2702x10° 54 0
5 100 7.7772%10° 4.9485<1¢° 12 2 5 139 3.1247x10° 1.8015x10° 04 2
6 110 5.0375%10° 1.8484x<10P 03 1 6 141 7.3743%10° 3.8980x1(F 02 1
7 112 2.6684x107 1.8302x10° 01 0 7 142 30584107 3.9236%10° 02 1
8 111 1.4497x107 1.8670x1(¢ 00 1 8 141 1.4958x1¢° 3.9564x10° 00 1
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Fig. 1: a) Plot of f (x) = exp(~40>*), b) nede distribution at final iteration, ¢) number of interpolation points vs. error
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Fig. 2: a) Plot of gp™, b) node distribution at final iteratuion, ¢) number of interpolation points vs. error

g, (x)=10""" [max{o,leHp {max{o,j - XHP (8)

XE[O,l]

Therefore, g, C*'and the support of g, is the

interval:
{1 3}
474

We will still use 0y = 1.5%10 " and 0, = 1x107"° and
use p = 3. The results are shown in Table 3. The method
converges in 8 iterations and the errors and condition
numbers of the interpolation matrix are reasonably small.
The plots for gp®, the node distribution at the final
iteration and the errors are shown Fig. 2a-c, respectively.
We observe that the method adaptively places more
interpolation points close to where the function has sharp
features. Finally, when mterpolating on 141 equally
spaced points the error will be 4.9640x107" with the
condition number 1.0056x10°. Therefore, although the
condition mumber of the adaptive method is a bit larger
and the error 1s smaller. This once again proves the
utility of the adaptive method.

CONCLUSION

We have shown that the adaptive radial basis
function method provides good results for interpolation
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of bump functions and can be used for other
function with sharp gradients. We also see that the
absence of the parameter does not significantly affect our
results.
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