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Abstract: This study attempts a development of a Sequential Monte Carlo (SMC) algorithm approach of
prediction based on joint probability distribution in Hidden Markov Model (HMM). SMC methods, a general
class of monte carlo methods are mostly used for sampling from sequences of distributions. Simple examples
of these algorithms are extensively used in the tracking and signal processing literature. Recent developments
indicate that these techmques have much more general applicability and can be applied very effectively to
statistical inference problems. Firstly, due to the problem involved in estimating the parameter of HMM, the
HMM 1s now represented in a state space model and the Sequential Monte Carlo (SMC) methoed 13 used.
Secondly, the researchers make the prediction using SMC method in HMM and then develop the
corresponding on-line algorithm. At last, the data of daily stock prices in the banking sector of the Nigerian
Stock Exchange (NSE) (price index between the years 1st January 2005 to 31st December 2008) are analyzed
and experimental results reveal that the method proposed n this marmer 15 effective.
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INTRODUCTION

State space or hidden Markov models are convenient
means to statistically model a process that varies n
time. The state space model (Doucet and Johansen,
2009) of a hidden Markov model is shown by the
following two equations:

State equation: X (X, ,=x,_,)~f(x,/x,_,) (1)
Observation equation: Y,| (X, = x,)~gly,! x,) 2

The state variables x, and observations y, may be
continuous-valued, discrete-valued or a combmation of
the two flxix.) which indicates the probability density,
assoclated with moving from x.,- x, and s(v. %) are the
state (transition) and observation densities. Practically,
the x’s are the signals in signal
processing (Liu and Chen, 1995), the actual words in
speech recognition (Rabiner, 1989), the target features
in a multitarget tracking problem (Avitzour, 1995;
Gordon et al., 1993, 1995), the image characteristics in
computer vision (Isard and Blake, 1996), the gene
indicator in a DN A sequence analysis (Churchill, 1989) or
the underlying volatility m an economical time series
(Pitt and Shephard, 1997). Hidden Markov models shown

unseen  true

the applications of dynamic state space model in
DNA and protein sequence analysis (Krogh ef al., 1994;
Liu et al, 1997).

While, using the functions provided by C++ to
expand an on-line algorithm of predicting hidden Markov
model, this study takes impetus from Johansen (2009)
SMCTC: Sequential Monte Carlo m C++. Further
supports were derived from some results on predicted and
actual data of monthly national air passengers in America.
Cheng applied SMC methodology to tackle the problems
of optimal filtering and smoothing in hidden Markov
models. SMC have also stirred great interest in the
engineering and statistical literature (Doucet et al., 2000)
for a summary of the state of the art). Lately, by
Johansen et al. (2008), SMC methods have been applied
for resolving a marginal Maximum Likelihood problem. ITn
Gordon et al. (1993), the application of SMC to optimal
filtering was first offered. Here, SMC method 1s developed
for prediction of state by estimating the probability
P ¥,

Hidden Markov model: Although, imitially introduced and
studied as far back as 1957 and early 1970’s, the recent
popularity of statistical methods of HMM 1s not in
question. A HMM 1is a bivariate discrete-time process
X0V heo where X}, 1s an homogeneous Markov chain
which 13 not directly observed but can only be observed
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through  {Y.}., that produce the sequence of
observation. {Y,},., 18 a sequence of independent random
variables such that the conditional distribution of Y, only
depends on ¥, The underlying Markov chain {3}, is
called the state. In general, the random variables X; Y,
can be of any dimension and of any domain such as
discrete, real or complex.

The researchers collect K elements of X, and Y, for
k=1, 2. . Kto construct the vectors X, and Y,
respectively. Because of the Markov assumption, the
probability of the current true state given the
immediately  previous one is conditionally
independent of the other earlier states:

PRl Xy s Xy X )= P (X Xy )

Similarly, the measurement at the kth time step 1s
dependent only upon the current state, so 13 conditionally
independent of all other states given the current state:

POV ¥ XX ) =Py 1X,)

Using these assumptions, the probability distribution
over all states of the HMM can be written simply as:
T Yk) = P (X1)

P (X Xy, ¥iao

POy X[ ]pG % 0p (v %)
k=2

Which i1s reflected graphically in Fig. 1. Given,
P{xivy) we can find plxiv) using the following
prediction and update steps:

Prediction: p (X, 1Y, )= [P(X,}X, )p(X, 1Y, ) dx,

p (Y X )p (Xlelk 1)

Updating :p Xk:Y1 .
1 k- 1) ka

(Y,

In this case, we use numerical integration which
becomes computationally complex when the number of
states of x, are large. One particular Monte Carlo based
approach to solve this for the HMM 1s the SMC.

Sequential monte carlo methods: Since their pioneering
contribution in 1993 (Gordon et al., 1993), SMC have
become a well known class of numerical methods for the
solution of optimal estimation problems in non-linear non-
Gaussian scenarios. The key idea of SMC method is to
represent the posterior density function p (x| you) at
k-1 by samples and associated weights
ey wi =1, N} and to compute estimates based on

time

74

Yo 8 (il %)

¥ £(x, | %)

Fig. 1: Probability distribution over all state of TINM

these samples and weights. As the number of samples
becomes very large, thus Monte Carlo characterization
develops mto an equivalent representation to the
functional description of the posterior probability density
function (Sanjeev et al., 2002). Tf we let :

(1) (1)
{ X k1o Wp i

i= 1,....,N}
be samples and associated weights approximating the
density function:

p (XUk—l | yUk—l){XE‘ljik‘l }itl

1s a set of particles with associated weights;
@
{Wu k- 1} .

]
k-1

with
=1

i=I'N

then the density function are approximated by:

P (X | ¥oer) ™ ZW(I) & (X, —Xfﬁl)

Where, 8(x) sigmfies the Dirac delta role. Y, becomes
available when a new observation arrives and the density
function pxiy.) are obtamned recursively in two stages:

*  Drawing samples xi ~p(x,x, ;)
»  Updating weight with the principle of importance
sampling (Doucet et al., 2000; Sanjeev ef al., 2002)

The particles are proliferated over time by Monte
carlo simulation to get new particles and weights (usually
as new information are received), hence forming a series
of PDF approximations over time. The reason that it worls
can be understood from the theory of (recursive)
importance sampling.
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Procedural functions: This is how it works. We consider
a particular algorithm for the SMC, known also as the
Sampling Importance Resampling (SIR) (Gordon ef al.,
1993; Carpenter et al, 1999, Johansen, 2009). The
algorithm can be summarized as follows: The algorithm is
initiated by setting k = 1 for which we define
plEgxy) =plx )

Prediction (for step k): Draw N samples from the
distribution p(xx,,=s{,) ¥ to form the particles §,%{} .
The weights is:

G

k
";V(i)
W

il

Where, % 1s calculated from the conditional PDF
plyyx, =), given observation Y,
Resample (for step k): Resample the random measure
%P} obtained m the prediction procedure to get:

=
Nlian

which has umform weights. The importance of the
prediction step is clear by establishing the following
results. Using a importance function a(xiy) satistying the
property:

QX Vi) = QX X, Y )

{59} is the random measure for estimating P(x.i¥x)
where & =| &5, | is the trajectory for particle 1 and where
W =, (§) 1s the normalized weights of particle T at time
k which can be calculated recursively. Let;

Return

According to the argument, at the kth step, the
density function estimate for p(xuy.) is:

N "
PRy, )= > Wy 8 (x, —§)

1=1

After the demsity function 8=y} has been
estimated, the observation prediction with some samples
with associated weights can be made. Accordingly,
p(hyia) are approximated by a new set of samples

{3i.w 1t and the observation prediction equation is:
i=1:H

N .
Py )= D Wy 8 (v, —yi)
i=1

Data description: The earlier method 1s applied to the data
sets of daily stock prices in the banking sector of the
Nigenan Stock Exchange (price index between the years
Ist Tanuary 2005 to 31st December 2008). Three hidden
states are studied: bull, bear and even. These hidden
states along with the observable sequences of large rise,
small rise, no change, large drop and small drop were used
to develop the hidden Markov model (Fig. 2).

The sequence of observation i1s obtained by
subtracting the prior price from the current price and then
with the percentage change gives the classification of the
sequence of observation.

Let P, be the price of an asset at time t , the daily price
relative/log return is calculated r=legp./p.. . Regularly,
stock prices alter in stock markets as seen in the
price index on Tuesday, February 5th 2006; it fell by
>100% (Fig. 3). There is no infallible system that
indicates the precise movement of stock price. Instead,
stock price is subjective to the nfluence of various
factors such as compeny fundamentals, external factors
and market behaviour. These decide the state of the

Fig. 2: Daily stock prices in the banking sector of the Nigerian Stock Exchange (price index between the years 1st

Jammary 2005 to 31st December 2008)
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Fig. 3: Daily stock prices i the banking sector of the Nigerian Stock Exchange (red line represents predicted stock price
while blue line represents actual stock price)

Table 1: Predicated daily stock price in the banking sector of the NSE Table 1: Contimied

Actual Predicted R.E (®9) Actual Predicted R.E (®9)
24 23.8489 0.629583 22.94 22.8994 0.176983
24.7 24.0614 2.585425 23 22,9894 0.046087
24.9 24.4768 1.699598 22.98 23.0266 -0.202790
25 24.9410 0.236000 22.94 23.0066 -0.290320
24.8 24.9793 -0.722980 22.8 22.8641 -0.281140
24.45 24.6880 -0.973420 22.51 22.6008 -0.403380
24.3 24.3934 -0.384360 22.75 22.6411 0.478681
23.99 24.0885 -0.410590 22.5 22,5232 -0.103110
23.95 23.9330 0.070981 22.35 22.3730 -0.102910
24.47 24.2088 1.067430 2245 22.3671 0.369265
24.09 24.1513 -0.254460 22.46 22.4187 0.183882
23.8 23.9220 -0.512610 23.58 23.1687 1.744275
23.22 23.4166 -0.846680 22.41 22,7752 -1.629630
23.6 23.4176 0.772881 23.06 22.9608 0.430182
23.42 23.3770 0.183604 23.7 23.5019 0.835865
23.6 23.4982 0.431356 24.8 24.4987 1.214919
24.49 24.1671 1.318497 25.68 25.5147 0.643692
24.3 24.3828 -0.340740 25.08 25.5347 -1.813000
23.88 24.1404 -1.090450 24.4 24.9159 -2.114340
23.94 24.0180 -0.325810 24.7 24,7253 -0.102430
23.85 23.8900 -0.167710 24.49 24.4938 -0.015520
23.86 23.8301 0.125314 24.5 24.4089 0.371837
23.73 23.7339 -0.016430 25.03 24.7630 1.066720
23 23.1971 -0.856960 25.4 25.2465 0.604331
22.98 22.9523 0.120540 26.24 26.0237 0.824314
22.99 22.8886 0.441061 27 26.8721 0.473704
23 22.9326 0.293043 27 27.2044 -0.757040
23 22.9550 0.195652 26.98 27.2338 -0.940700
23.1 23.0550 0.194805 26 26.5007 -1.925770
23.2 23.1768 0.100000 26.09 26.1648 -0.286700
23.78 23.6018 0.749369 2617 26.0937 0.291555
23.7 23.7578 -0.243880 27.39 26.8896 1.826944
23.45 23.6338 -0.783800 28.75 28.2272 1.818435
23.3 23.4173 -0.503430 28.98 29.0147 -0.119740
23.35 23.3440 0.025696 28.07 28.6229 -1.969720
22.89 23.0174 -0.556570 27.5 27.8895 -1.416360
22 22.2651 -1.205000 26.77 27.0194 -0.931640
22.97 22.5771 1.710492 27.5 27.1466 1.285091
22.9 22.7748 0.546725 28.24 27.8034 1.546034
23 22.9519 0.209130 29.22 28.8430 1.290212
22.95 22.9895 -0.172110 28.99 29.1623 -0.594340
22.91 22.9678 -0.252290 28.5 28.8644 -1.278600
22.55 22.6986 -0.658980 28.31 28.5203 -0.742850
22.95 22.8260 0.540305 283 28.3238 -0.084100
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Table 1: Continued

Actual Predicted R.E (%)

28.02 28.0612 -0.147040
28.08 27.9971 0.295228
28.05 27.9861 0.227807
27.95 27.9407 0.033274
27.91 27.9132 -0.011470
28.6 28.3646 0.823077
29.4 29.1204 0.951020
29.99 29.8659 0.413805
29.65 29.9393 -0.975720
29.75 29.9012 -0.508240
29.96 29.9926 -0.108810
29.99 30.0266 -0.122040

Mape (%0); 0.068285

market which maybe in bull, even or bear state. It grows
along time through different market state which are hidden
states. The state of the market can be a Markovian
process and are modeled in HMM.

Experimental outcome: Utilizing the functions provided
by C++, this study develops an on-line algorithm of
predicting ldden Markov model according to the
analysis of section 2 and 3. Tt draws motivation from
Tohansen (2009) SMCTC: Sequential Monte Carlo in CH+.
The on-line prediction using SMC begins with states
producing signals that follow the normal distribution. The
number of hidden states in the Markov chain are defined
as Bull (state 1), Even (state 2) and Bear (state 3).
Figure 3 shows the predicted and actual daily stock prices
and Table 1 shows predicted representational prices of
the NSE and predicted errors.

The stock price is modeled in HMM and prediction is
made based on available observations. Due to the strong
statistical foundation of HMM and SMC method, it can
predict similar pattern proficiently (Fig. 3). From Table 1,
we can observe that the Mean Absolute Percentage Error
(MAPE) 15 0.068. Hence, the predictive exactness 1s high.

CONCLUSION

In this study, an online, sequential Monte Carlo
method 1s applied for prediction n Hidden Markov model.
A C++ (Sequential Monte Carlo in C++) template class
library (Tohansen, 2009) enabled us to develop an online,
sequential Monte Carlo for the prediction

The basic theory of HMM and SMC method
was introduced. Then we approximated the density
function with a set of random samples with associated
welghts.

Lastly, the data sets of daily stock prices mn the
banking sector of the Nigerian Stock Exchange (price
index between the years 1st January 2005 to 31st) are
analyzed, and experimental results revealed that the online
algorithm 1s effective.
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