Journal of Modern Mathematics and Statistics 4 (1): 44-49, 2010

ISSN: 1994-5388

© Medwell Journals, 2010

Necessary and Sufficient Conditions Where One Γ -Semigroup is a Γ -Group

Sabri Sadiku

Faculty of Mining and Metallurgy in Mitrovica, University of Prishtina, R. Kosova

Abstract: In this study, researchers have studied the Γ -algebraic structures and some characteristics of them. According to Sen and Saha, we defined algebraic structures: Γ -semigroup, Γ -regular semigroup, Γ -idempotent semigroup, Γ -invers semigroup and Γ -group. Theorem 2, 3 and 4 proves the existence of Γ -group and gives necessary and sufficient conditions where one Γ -semigroup is a Γ -group. Finally, theorem 5 shows necessary and sufficient conditions where one Γ -regular semigroup is a Γ -group. In addition, for every Γ - algebraic structure that we mentioned before we give an original example.

Key words: Γ-algebraic structures, Γ-semigroups, (α, β) -inverse element, α -idempotent element, Γ-semigroup idempotent, Γ-group

INTRODUCTION

Idea for Γ -algebraic structures follows from Γ -ring which notion has been introduced by Nobusawa (1964). Theory of Γ -semigroup is expanded in a natural way while as foundation we take in the theory of semigroups.

Definition 1: Let:

$$S = \{a, b, c, ...\}$$

and

$$\Gamma = \{\alpha, \beta, \gamma, ...\}$$

two nonempty sets. A mapping $f: S \times \Gamma \times S \rightarrow S$ or $f: (a, \alpha, b) \rightarrow c$; $a, b, c \in S$; $\alpha \in \Gamma$ called ternary operation in S and Γ . This operation we denote by $(.)_{\Gamma}$ or by $(+)_{\Gamma}$. The element (a, α, b) we denote simple by $a\alpha b$. Operation f is commutative if $\forall a, b \in S$, $\alpha \in \Gamma$, satisfies condition:

$$a\alpha b = b\alpha a$$

Operation f is associative if it satisfies condition:

$$(a\alpha b)\beta c = a\alpha (b\beta c); \forall a, b, c \in S, \alpha, \beta \in \Gamma$$

Definition 2: Let:

$$S = \{a, b, c,...\}$$

and

$$\Gamma = \{\alpha, \beta, \gamma, ...\}$$

two non-empty sets. Order pair (S, $(.)_{\!\scriptscriptstyle T})$ is called $\Gamma\text{-algebraic structure}.$

Definition 3: A Γ -algebraic structure $(S, (.)_{\Gamma})$ is called Γ -groupoid if it satisfies condition:

(i)
$$\forall a, b \in S, \alpha, \beta \in \Gamma \Rightarrow \alpha \alpha b \in S$$

Example 1: Let:

$$S = \{a = 4z + 3, z \in Z\} = \{...-13, -9, -5, -1, 3, 7, 11, 15,...\}$$

$$\Gamma = \{\alpha = 4z + 1, z \in Z\} = \{...-11, -7, -3, 1, 5, 9, 13,...\}$$

two sets. If a=4z+3, b=4z+3 and $\alpha=4z_3+1$ where $a,b\in S$ and $\alpha\in \Gamma$. Then:

$$a\alpha b = 4z_1 + 3 + 4z_3 + 1 + 4z_2 + 3$$

= $4(z_1 + z_2 + z_3 + 1) + 3 = 4z + 3 \in S$

Therefore $(S, (+)_r \text{ is } \Gamma\text{-groupoid} \text{ where operation } (+)_r$ or $a\alpha b$ is addition of integers.

MATERIALS AND METHODS

In definition 4, we defined Γ -semigroup by Γ -algebraic structure and examined few examples by using some of their characteristics. Next, briefly present definition of Γ -subsemigroup (Saha, 1987), also definition of ideal in Γ -semigroup (Saha, 1988).

Definition 4: A Γ -algebraic structure (S (.)_r is called Γ -semigroup if it satisfies condition:

(i)
$$\forall a, b \in S, \alpha \in \Gamma \Rightarrow a\alpha b \in S$$

(ii)
$$\forall a, b, c \in S; \alpha, \beta \in \Gamma (a\alpha b) \beta c = a\alpha (b\beta c)$$

 Γ -semigroup we can definite also in this way: A Γ -groupoid (S, (.)_r satisfying the associative law is a Γ -semigroup:

$$(a\alpha b)\beta c = a\alpha (b\beta c); (\forall a, b, c \in S; \alpha, \beta \in \Gamma)$$

Example 2: Let S be the set of all integers of the form 6z + 1:

$$S = \{6z + 1: z \in \mathbb{Z}\} = \{..., -11, -5, 1, 7, 13, ...\}$$

and Γ be the set of all integers of the form 6z+5:

$$\Gamma = \{6z + 5 : z \in \mathbb{Z}\} = \{\cdots, -13, -7, -1, 5, 11, 17, 23, \cdots\}$$

Then order pair $(S, (+)_T)$ is a Γ -semigroup where $a\alpha b$ denotes the addition of integers.

Solution

Closure property: If

 $a = 6z_1 + 1, b = 6z_2 + 1, z_1, z_2 \in \mathbb{Z}$

and

$$\alpha = 6z' + 5, z' \in \mathbb{Z}$$

then:

$$a\alpha b = 6z_1 + 1 + 6z' + 5 + 6z_2 + 1$$

= $6(z_1 + z_2 + z' + 1) + 1 = 6z + 1 \in S$

therefore, pair $(S, (+)_T)$ is a grupoid.

Associative property: If

$$a = 6z_1 + 1, b = 6z_2 + 1, z_1, z_2 \in \mathbb{Z}$$

and

$$\alpha = 6z' + 5$$
, $\beta = 6z'' + 5$, z' , $z'' \in \mathbb{Z}$

then:

$$(a\alpha b)\beta c = \{6(z_1 + z_2 + z' + 1) + 1\} + 6z'' + 5 + 6z_3 + 1$$
$$= 6(z_1 + z_2 + z_3 + z' + z'' + 2) + 1 = 6z + 1$$

From the other side:

$$a\alpha(b\beta c) = 6z_1 + 1 + 6z' + 5 + (6z_2 + 1 + 6z'' + 5 + 6z_3 + 1)$$
$$6(z_1 + z_2 + z_3 + z' + z'' + 2) + 1 = 6z + 1$$

Consequently,

$$(a\alpha b)\beta c = a\alpha(b\beta c)$$

We now prove that the pair $(S, (+)_{\Gamma})$ is a Γ -semigroup.

Example 3: Let S be the set of all matrices of type:

$$S = \left\{ \begin{pmatrix} a & 0 \\ b & 1 \end{pmatrix} : a, b \in R \right\}$$

and Γ be the set of all matrices:

$$\Gamma = \left\{ \begin{pmatrix} \mathbf{x} & \mathbf{0} \\ \mathbf{0} & 1 \end{pmatrix} : \mathbf{x} \in \mathbf{R} \right\}$$

We can prove that the system $(S, (.)_T \text{ is } \Gamma\text{-semigroup},$ where operation $(.)_T$ is the product of the matrices.

Solution

Closure property: If

 $A_1 = \begin{pmatrix} a_1 & 0 \\ b_1 & 1 \end{pmatrix}, \ A_2 = \begin{pmatrix} a_2 & 0 \\ b_2 & 1 \end{pmatrix}, \ A_1, A_2 \in S$

and

$$\alpha = \begin{pmatrix} x & 0 \\ 0 & 1 \end{pmatrix}, \alpha \in \Gamma$$

then:

$$\begin{split} A_1 \alpha A_2 = & \begin{pmatrix} a_1 & 0 \\ b_1 & 1 \end{pmatrix} \begin{pmatrix} x & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a_2 & 0 \\ b_2 & 1 \end{pmatrix} \\ = & \begin{pmatrix} a_1 x & 0 \\ b_1 x & 1 \end{pmatrix} \begin{pmatrix} a_2 & 0 \\ b_2 & 1 \end{pmatrix} \\ = & \begin{pmatrix} a_1 x a_2 & 0 \\ b_1 x a_2 + b_2 & 1 \end{pmatrix} = \begin{pmatrix} a & 0 \\ b & 1 \end{pmatrix} \end{split}$$

where,

$$a_1 x a_2 = a, b_1 x a_2 + b_2 = b$$

and

$$A_1 \alpha A_2 \in S$$

Associative property is true because the product of the matrices is associative and relation is evident:

$$(A_1 \alpha A_2)\beta A_3 = A_1 \alpha (A_2 \beta A_3)$$

since the algebraic system $(S, (.)_T \text{ is } \Gamma\text{-semigroup}.$

Semigroup S can be considered always like Γ -semigroup if operation in S expands in SU(1) where 11 = 1 and 1a = a1 = a, $(1 \neq a)$, $\forall a \in S$. Hence, SU(1) is semigroup with identity element. If we define ab = a1b and $\Gamma = \{1\}$ in this case S is Γ -semigroup. Therefore, principal results of the theory of semigroups can be expanded in the theory of a Γ -semigroup.

Lemma 1: If S is a semigroup, $\Gamma = \{1\}$ and ab = a1b then S is Γ -semigroup.

Proof: From definition 4, it is evident.

Definition 5: Let S be a Γ -semigroup. Subset M of S is Γ -subsemigroup of Γ -semigroup S if $M\Gamma M \subseteq M$, where:

$$M\Gamma M = \{m\alpha n : m, n \in M; \alpha \in \Gamma\}$$

Other alternative way of defining Γ -subsemigroup M of semigroup S can be found by Saha (1987).

Example 4: Let S = [0.1] and

$$\Gamma = \left\{ \frac{1}{n} : n \in Z^+ \right\}$$

Then S is Γ -semigroup. But subset:

$$\mathbf{M} = \left[0, \frac{1}{2}\right]$$

is Γ - subsemigroup of Γ -semigroup S. We can see that:

$$M\subseteq S$$
 and $m\alpha n \in M$, $\forall m, n \in M$; $\forall \alpha \in \Gamma$

Determination of ideal in Γ -semigroup S, although not according to the definition provided by Saha, the idea and some characteristics were taken from Saha (1988).

Definition 6: A left (right) ideal of a Γ-semigroup S is non-empty subset I of S ($I \subset S$, $I \neq \varphi$) such that SΓI $\subset I$ (IΓS $\subset I$). If I is both a left and right ideal, then we say that I is an ideal of S. Let Q non-empty set of S.Q is quasi-ideal of Γ-semigroup S if QΓS \cap SΓQ \subseteq Q.

Definition 7: A Γ -semigroup S is left (right) simple if it has no proper left (right) ideal. A Γ -semigroup S is said to be simple if it has no proper ideal.

Definition 8: An element $a \in S$ is said to be a regular in the Γ -semigroup S if $a \in a \Gamma S \Gamma a$, where:

$$a\Gamma S\Gamma a = \{(a\alpha b)\beta a : b \in S; \alpha, \beta \in \Gamma\}$$

A Γ -semigroup S is said to be regular if every element of S is regular.

Example 5: Let $A = \{1, 2, 3\}$ and $B = \{4, 5\}$ be two non-empty sets. Let $S = \{f, g, h\}$ $\Gamma = \{\alpha, \beta, \gamma, \delta, \theta, \phi\}$, where f, g, h are maping from the set A to the set B and α , β , γ , δ , θ , ϕ are maping from the set B to the set A. They are defined by:

$$f = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 4 & 4 \end{pmatrix}, g = \begin{pmatrix} 1 & 2 & 3 \\ 5 & 5 & 5 \end{pmatrix}, h = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 4 & 5 \end{pmatrix}$$

and:

$$\alpha = \begin{pmatrix} 4 & 5 \\ 1 & 1 \end{pmatrix}, \beta = \begin{pmatrix} 4 & 5 \\ 2 & 2 \end{pmatrix}, \gamma = \begin{pmatrix} 4 & 5 \\ 3 & 3 \end{pmatrix},$$
$$\delta = \begin{pmatrix} 4 & 5 \\ 2 & 1 \end{pmatrix}, \theta = \begin{pmatrix} 4 & 5 \\ 2 & 3 \end{pmatrix}, \varphi = \begin{pmatrix} 4 & 5 \\ 1 & 3 \end{pmatrix}$$

Where, 1f = 4, 2f = 4, 3f = 4 and similarly others. We can see that:

$$f\alpha f\delta f = f, g\alpha g\gamma g = g, h\partial h\phi h = h$$

For example: if $1 \in A \land f \in S$, we have 1f = 4. From the other side:

$$1(f\alpha f\delta f) = 1f(\alpha f\delta f) = 4\alpha(f\delta f)$$
$$= 1f(\delta f) = 4\delta(f) = 2f = 4$$

We proof $f\alpha f\delta f=f$. Therefore, S is regular Γ -semigroup. We can give another definition about regular Γ -semigroups.

Definition 9: A Γ -semigroup S is called regular Γ -semigroup if for any $a \in S$ exists $b \in S$, α , $\beta \in \Gamma$ such that $a = (a\alpha b) \beta a$.

Example 6: Let S be the set of all 2×3 matrices over the field and Γ be the set of all 3×2 matrices over the same field:

$$S = (a_{ij}^{})_{2\times 3}^{}; \Gamma = (x_{ij}^{})_{3\times 2}^{}$$

then S is regular Γ -semigroup where $A\alpha B$ (A, $B\epsilon S$, $\alpha \epsilon \Gamma$) denote the product of the matrices. Indeed for $A\epsilon S$, we can chose $\alpha \epsilon \Gamma$ such that:

$$(A\alpha A)\alpha A = A\alpha A = A$$

Definition 10: An element $e \in S$ is said to be an idempotent of Γ-semigroup S, if $e\alpha e = e$ for some $\alpha \in \Gamma$. In this case, we call e an α -idempotent. S is a idempotent Γ -semigroup if and only if every element of S is idempotent.

Example 7: Let

$$\mathbf{S} = \left\{ \mathbf{E}_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \mathbf{E}_2 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \mathbf{E}_3 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \right\} \text{ and } \Gamma = \left\{ \alpha = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right\}$$

Then S is a idempotent Γ -semigroup.

Definition 11: Let S be a Γ-semigroup and a∈S. If for b∈S exists α , β ∈Γ such that $a = (a\alpha b)\beta a$ and $b = (b\beta a)\alpha b$ then b is called an (α, β) invers of a. In this case researcher write:

$$b \in V_{\alpha}^{\beta}(a)$$

Proposition 1: If S is a regular Γ -semigroup and $a \in S$, then $V_{\alpha}^{\beta}(a) \neq \emptyset$ for some $\alpha, \beta \in \Gamma$.

Proof: If S is a regular Γ -semigroup, then for some $a \in S$ exists $b \in S$, α , $\beta \in \Gamma$ such that $a = (a\alpha b)\beta a$. For element $x = b\beta a\alpha b \in S$, we can prove that $x \in V_{\alpha}^{\beta}(a)$. Indeed:

$$(a\alpha x)\beta a = (a\alpha b\beta a\alpha b)\beta a = (a\alpha b\beta a)\alpha b\beta a = a\alpha b\beta a = a$$
 and

 $x\beta a\alpha x = b\beta(a\alpha b\beta a)\alpha b\beta a\alpha b = b\beta(a\alpha b\beta a)\alpha b = b\beta a\alpha b = x$

Then: $x \in V_{\alpha}^{\beta}(a)$

Definition 12: A Γ-semigroup S is called a inverse Γ-semigroup if every element a of S has a unique (α, β) -inverse, whenever (α, β) -inverse of a exists.

Proposition 2: A regular Γ -semigroup S is a inverse Γ -semigroup if $|V_{\alpha}^{\beta}(a)|=1$ for all $a\in S$ and for all α , $\beta\in\Gamma$.

Proof: It is evident from definition 12.

Theorem 1: Let S be a inverse Γ-semigroup and a∈S, α, $\beta \in \Gamma$. If $\alpha^{-1} \in V_{\alpha}^{\beta}(\alpha)$, then $a\alpha a^{-1}$ is β -idempotent and $a^{-1}\beta a$ is α -idempotent of S.

Proof: If S is a inverse Γ -semigroup, then for $a \in S$ and α , $\beta \in \Gamma$ exists unique inverse element $\alpha^{-1} \in V_{\alpha}^{\beta}(\alpha)$ such that $a = a\alpha a^{-1} \beta a$ and $a^{-1} = a^{-1} \beta a\alpha a^{-1}$. Element $(a\alpha a^{-1}) \in S$ is a β -idempotent:

$$(a\alpha a^{-1})\beta(a\alpha a^{-1})=a\alpha(a^{-1}\beta a\alpha a^{-1})=a\alpha a^{-1}$$

and element $a^{-1}\beta a$ is a α -idempotent i S:

$$(a^{-1}\beta a)\alpha(a^{-1}\beta a) = a^{-1}\beta(a\alpha a^{-1}\beta a) = a^{-1}\beta a$$

RESULTS AND DISCUSSION

Initially we create semigroup S_{α} (Chinram and Siammai, 2009). In Theorem 3 and 4, researchers proof necessary and sufficient condition where semigroup G_{α} is a Γ -group. Furthermore, we have determined necessary and sufficient condition where regular and inverse semigroup G_{α} is a Γ -group. Now we will create the semigroup S_{α} .

Let S be a Γ -semigroup and α be a fixed element of Γ . If a, b \in S, define operation \circ in S by, a \circ b = a α b, \forall a, b \in S. Then, S is a semigroup.

Proof:

- (i) $\forall a, b \in S; \alpha \in \Gamma \Rightarrow a \circ b = a \alpha b \in S, \alpha \text{-fixed element of } \Gamma$
- (ii) $\forall a, b, c \in S, \alpha \in \Gamma$ we have $a \circ (b \circ c) = a \circ (b \alpha c) = a \alpha (b \alpha c)$ On the other hand:

$$(a \circ b) \circ c = (a\alpha b) \circ c = (a\alpha b)\alpha c = a\alpha(b\alpha c)$$

Since:

$$(a \circ b) \circ c = a \circ (b \circ c) \Longrightarrow (S, \circ)$$
 is semigroup

We denote this semigroup by S_{α} .

Example 8: If

$$S = \left\{ \begin{pmatrix} a & 0 \\ b & 1 \end{pmatrix} : a, b \in R \right\} \text{ and } \alpha = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

is fixed element of Γ . Then S_{α} is semigroup, where operation is the product of matrices. We took definition of Γ -group from Sen and Saha (1986) which in a free form appears as:

Definition 13: A Γ-semigroup G is called a Γ-group if G_{α} is group for some $\alpha \in \Gamma$ (Sen and Saha, 1986).

Example 9: If $S = \{6z+1: z \in \mathbb{Z} \}$ and $\Gamma = \{5\}$ from example 2. We can see that S_5 is semigroup:

(i)
$$\forall a = 6z_1 + 1, b = 6z_2 + 1 \in S, \alpha = 5 \in \Gamma$$

(ii) $a \circ b = a\alpha b = (6z_1 + 1) + 5 + (6z_2 + 1) = 6(z_1 + z_2 + 1) + 1 = 6z + 1 \in S$

$$a \circ (b \circ c) = [(6z_1 + 1) \circ (6z_2 + 1 + 5 + 6z_3 + 1)]$$

$$= 6(z_1 + z_2 + z_3 + 2) + 1 = 6z + 1 (a \circ b) \circ c$$

$$= [(6z_1 + 1) \circ (6z_2 + 1)] \circ (6z_3 + 1)$$

$$= (6z_1 + 1 + 5 + 6z_2 + 1) \circ (6z_3 + 1)$$

$$= 6(z_1 + z_2 + z_3 + 2) + 1 = 6z + 1$$

Consequently, S_5 is Γ -semigroup and denoted by G_5 . We can see that G_5 is Γ -group. Identity element in G_5 is $-5 \epsilon G_5$:

$$-5 \circ (6z+1) = -5 + 5 + 6z + 1 = 6z + 1 \in G_5$$

$$\forall a = 6z + 1 \in G_5, \exists !b = -6(z+2) + 1 \in G_5$$

$$a \circ b = 6z + 1 + 5 + [-6(z + 2) + 1] = 6z + 6 - 6z - 12 + 1 = -5$$

Consequently, G_5 is Γ -group. Similarly, we can see that G_α is Γ -group for all $\alpha \epsilon \Gamma$.

Theorem 2: G_{α} is a Γ -group if and only if G is simple Γ -semigroup.

Proof: Suppose G is simple, then G is right simple and left simple. Let $a \in G$, consider the set $a \alpha G$. We can show that $a \alpha G$ is a right ideal in G. Since G is right simple we have $a \alpha G = G$. Similarly, we can show that $G \alpha a = G$. Hence, $a \circ G = G$ and $G \circ a = G$ for any $a \in G$. Then from the known (Ljapin, 1960) result it follows that G_{α} is a Γ -group.

Conversely assume that G_{α} is a group and e_{α} be the identity element in G_{α} . Let I be a left ideal in the Γ -semigroup G and $a \in I$. Then there exists $b \in G$ such that $b \circ a = e_{\alpha}$. Hence, $e_{\alpha} = b \circ a = b \alpha a = \epsilon I$. Let $c \in G$. Then $c = c \circ e_{\alpha} = c \alpha e_{\alpha} \in I$. This shows that G = I. Similarly, we can show that G has no proper right ideal. Hence G both left simple and right simple Γ -semigroup. Then G is simple Γ -semigroup.

Corollary 1: G_{α} is a Γ -group if and only if G is a Γ -semigroup and if it has not proper ideal.

Proof: From Theorem 2 and definition 6 and 7 is evident.

Theorem 3: Let G a Γ -semigroup and $\alpha \in \Gamma$. G_{α} is Γ -group if and only if G does not have proper quasi-ideal.

Proof: Suppose that G does not have proper quasi-ideal. Let $a \in G$, consider the set $a \alpha G$. Then:

$$(a\alpha G)\Gamma G \cap G\Gamma(a\alpha G) \subset (a\alpha G)\Gamma G = a\alpha(G\Gamma G) \subset a\alpha G$$

Therefore, $a\alpha G$ is quasi-ideal. But G does not have proper quasi-ideal, then $a\alpha G=G$. Similarly we can show that $G\alpha a=G$. Hence, for every $a\epsilon G$ we have $a\circ G=G\circ a=G$. It shows that G_{α} is a Γ -group.

Conversely, suppose that G_α is a group and Q is quasi-ideal of G. Let $a{\in}Q,$ then:

$$G = G\alpha a = a\alpha G = a\alpha G \cap G\alpha a \subseteq Q\Gamma G \cap G\Gamma Q \subseteq Q$$

Consequently, G = Q. This shows that G does not have proper quasi-ideal.

Theorem 4: Let G be a Γ-semigroup if G_{α} is Γ-group for some $\alpha \in \Gamma$ then G_{α} is Γ-group for all $\alpha \in \Gamma$.

Proof: Let G_{α} be a group. Consider the sets $\alpha \beta G$ and $\alpha \beta G$, $\alpha \in G$, $\beta \in \Gamma$. Now $(\alpha \beta G)$ $\alpha G = \alpha \beta$ $(\alpha G) \subset \alpha \beta G$ and αG $(\alpha G) = (\alpha G)$ $\beta G \subset \alpha G$. Hence, αG is a right ideal and αG is a left ideal in αG . Since αG is a group we have $\alpha G G = G$ and $\alpha G G G = G$. Then $\alpha \circ G_{\beta} = G$ and $\alpha G G G = G$ for all $\alpha \in G$. Hence, from known result it follows that $\alpha G G$ is a group.

Theorem 5: A regular Γ -semigroup G will be a Γ -group if and only if $e\alpha f = f\alpha e = f$ and $e\beta f = f\beta e = e$ for any two idempotents $e = e\alpha e$ and $f = f\beta f$ of G.

Proof: Suppose G is a Γ -group. Let $e=e\alpha e$ and $f=f\beta f$ of G be two idempotents in G. Then e is the identity element of the group G_{α} and f is dhe identity element of the group G_{β} . Now feG_{α} . Hence $e\circ f=f\circ e$ (e-identity of G_{α}) and $e\circ f=e\alpha f$, $f\circ e=f\alpha e$. This shows that $e\alpha f=f\alpha e=f$. Similarly $e\beta f=f\beta e=e$. Conversely, suppose that the given condition holds in a regular Γ -semigroup G. Let $a\in G$. Then there exist α , $\beta \in \Gamma$ and $b\in G$ such that $a=a\alpha$ ($b\beta a$) = $(a\alpha b)\beta a$. Let $e=b\beta a$ and $f=a\alpha b$. Hence $e\alpha e=e$ and $f\beta f=f$ are two idempotents in G. We shall show that G_{α} is a group. Let $c=(c\gamma d)\delta c$ be an element in G where γ , $\delta \in \Gamma$ and $d\in G$. Then:

$$(c\gamma d)\delta(c\gamma d) = [(c\gamma d)\delta c]\gamma d = c\gamma d$$
 and $(d\delta c)\gamma(d\delta c) = d\delta c$

are idempotents. Now:

$$\begin{split} e\alpha c &= e\alpha[(c\gamma d)\delta c] = [e\alpha(c\gamma d)]\delta c = (c\gamma d)\delta c = c \\ and \\ c\alpha e &= [c\gamma(d\delta c)]\alpha e = c\gamma[(d\delta c)\alpha e] = c\gamma(d\delta c) = c \end{split}$$

Hence, $e \circ c = e \in c = c \circ e = c \alpha e = c$ for all. Again $f\beta e = e$. Hence, $(a\alpha b)\beta e = e$. Then $a\alpha(b\beta e) = e$. Also

$$(b\beta e)\alpha a = b\beta[e\alpha(a\alpha b)\beta a] = b\beta[e\alpha(f\beta a)] = b\beta[(e\alpha f)\beta a] = b\beta(f\beta a) = b\beta a = e$$

Hence, for a there exists bbe in G_n such that:

$$a\circ (b\beta e)=(b\beta e)\circ a=e$$

Hence, G_{α} is a group.

Example 10: If

$$S = \left\{ \begin{pmatrix} a & 0 \\ b & c \end{pmatrix} : a, b, c \in \mathbb{Z} \right\}, \Gamma = \left\{ \begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix} x, y \in \mathbb{Z} \right\}$$

then S is Γ -semigroup. For fixed element:

$$\alpha = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \alpha \epsilon \Gamma$$

We can see that G_{α} is Γ -group. Identity element is:

$$E = \begin{pmatrix} -2 & 0 \\ 0 & -2 \end{pmatrix} E \circ A = E + \alpha + A = A$$

For:

$$A = \begin{pmatrix} a & 0 \\ b & c \end{pmatrix}, \exists !A^{-1} = \begin{pmatrix} -4+a & 0 \\ -b & -4+c \end{pmatrix}; \ A,A^{-1} \in G_\alpha: A \circ A^{-1} = A$$

Theorem 6: An invers Γ -semigroup G will be a Γ -group if and only if $e\alpha f = f\alpha e = f$ and $e\beta f = f\beta e = e$ for any two idempotents $e = e\alpha e$ and $f = f\beta f$ of G.

Proof: Inverse Γ -semigroup G always is a regular Γ -semigroup. Hence, the remaining part of proof of Theorem 6 follows from Theorem 5.

CONCLUSION

A Γ -semigroup G is a Γ -group, if G is simple or G does not have proper quasi-ideal or ideal. A regular or invers Γ - semigroup G will be a Γ -group if G satisfies condition in theorem 5 or 6.

REFERENCES

Chinram, R. and P. Siammai, 2009. Green's Lemma and Greens's Theorem for Ã-semigroups. Lobachevskii J. Mathemat., 30: 208-213.

Ljapin, E.S., 1960. Semigroups. Fizmatigiz, Moscow.

Nobusawa, N., 1964. On a generalization of dhe ring theory. Osaka J. Math., 1: 81-89.

Saha, N.K., 1987. On Ã-semigroup-II. Calcutta Mathemat. Soc., 79: 331-335.

Saha, N.K., 1988. On A-semigroup III. Bull. Calcutta Mathemat. Soc., 80: 1-12.

Sen, M.K. and N.K. Saha, 1986. On Ã-semigoup- I. Calcutta Mathemat. Soc., 78: 180-186.