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Abstract: In this study, the stochastic production planning involving random variable coefficients and random
demand is optimized using an interactive stochastic approach based on reference pomt satisficing method. This

approach combines the concept of probability efficiency for stochastic problems with the reference point

method for determimistic multiobjective problems. The decision maker expresses her/his references of each

objective and by setting the desired probability for each objective to aclueve values belonging to each
reference. The proposed approach enable the DM to learn in depth the features of the problem, to evaluate the
consequences of each decision and to know the trade-offs between the levels and the probabilities inside each

objective function and also among them.
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INTRODUCTION

In the field of Operations Research (OR), we often
encounter real problems in which the Decision Maker
(DM) wishes to optimize several objectives at the same
time and moreover, does not know the values of some
parameters at the moment he or she has to make the
decision. When these unknown parameters can be
considered as random variables, the resulting problem 1s
denominated in or  Stochastic  Multi-objective
Programming (SMP) problem. The solution of this kind of
problem 1s far from being a trivial task because two of the
main hypotheses of classical mathematical programming
are relaxed: the values of some of the parameters of the
problem are unknown and the Decision Maker (DM)
wishes to optimize several conflicting criteria at the same
time. Stochastic programming, as an optimization method
based on the probability theory have been developed in
various ways (Stancu-Minasian, 1984; Slowinski and
Teghem, 1990).

Production planming plays a vital role m the
management of manufacturing facilities. The production
planning problem aims to match production and sourcing
decisions to meet future customer demand subject to
production capacity, workforce availability and overtime
restrictions and 1s mherently an optimization problem.
Production planning process consists of three stages,

namely; manufacturing and marketing data preparation,
generation of production items and selling alternatives
and production plan formulation (Thomas, 2002).

Mathematical models for production planning
problems can be broadly classified mto two categories:
determmistic models and stochastic models. Determimistic
models assumes that the data are known and typically
model the uncertainty using best guesses of uncertain
values (Liu and Tu, 2008).

Several uncertamnties in manufacturing exist and can
be categorized mto two categories: envirommental
uncertainty and system uncertainty. The former refers to
uncertamnties that are beyond the scope of control of the
production process, such as supply and demand
uncertainty while the latter refers to uncertainties that
relate to the production process, such as operation yield
uncertainty, preduction lead tine uncertainty, quality
uncertainty and production failures (Mula ef al., 2006).

In this study, we focus on Stochastic Multiobjective
production planning problem with continuous random
variable coefficients i1n objective functions and
constraints. Using the probability maximization model to
maximize the probability that each objective function
becomes a certain value under chance constrained
conditions, the stochastic multi-objective production
plamming problem 1s transformed mto deterministic one.
Assuming that the DM has a stochastic goal for each of
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the objective functions, having determined the stochastic
goals of the DM, we present an interactive reference point
satisficing method to derive a satisficing solution for the
DM by updating the reference levels which allows the
consideration of probabilities given by the DM.

This method combines the concept of probability
efficiency for stochastic problems (Prekopa, 1995) with
the reference poimnt philosophy for deterministic
multi-objective problems. The decision maker expresses
her/his references of each objective and by setting the
desired probability for each objective to achieve values
belonging to each reference. This interactive procedure
helps the DM to understand the stochastic nature of the
problem, to discover the risk level, he is willing to assume
for each objective and to learn about the trade-offs among
the objectives.

Preliminaries
Multi-objective Optimization Preliminaries: Consider the
following general (MOP) problem:

fl(X ) i:L...,k (1)
st xe 8

Where:

X, Decision variable and denotes a solution

f (x) = Objective functions

S = The feasible region of the problem

These multiple objectives are usually incommensurate
and 1 conflict with one another because of this, multiple
objective optimisation is not to search for optimal
solutions but for efficient (non-inferior, non-dominated or
Pareto-optimal) solutions that can best attain the priori-
tised multiple objectives as greatly as possible. Concepts
and methods for multiobjective optimization are described
by Chankong and Haims (1983).

x' 18 called an efficient (Pareto-optimal) solution of
problem 2, if there does not exist any x€83 (x # x7), so that
F(x) < F(x) and F(x) # F(x) and x' is called a weakly
efficient solution of such problem if there does not exist
any XS (x # x") so that F(x)<F(x"), where £ (1= 1,..., k) are
assumed for minimisation.

MATERIALS AND METHODS

Multi-objective optimization problems are usually
solved by scalarization. Tt means that the problem is
converted into one or a family of single (scalar) objective
optimization problems.

This produces a new problem with a real-valued
objective function. Solving multi-objective optimization
problems usually requires the participation of a human

decision maker who is supposed to have better insight
into the problem and to express preference relations
between alternative solutions. Based on the ways of
extracting the decision maker's preference information and
using it in decision analysis processes, multiple objective
optimisation methods can be divided into three main
classes: efficient solution generation methods with
preferences provided after optimisation, methods for
generating the best compromise solutions based on
preferences provided a priori and mteractive methods with
preferences extracted progressively m decision analysis
processes.

Many interactive methods have been developed and
their main differences result from the ways of eliciting
local preferences and constructing single objective
optimisation problems. Since local preference information
is relatively easy to provide.

This study 1s mainly based on Miettinen (1999)s
research. Many researchers have developed various
interactive methods for MOP problems are collected
(Vincke, 1992).

Interactive reference point method: Tn order to get a
better understanding of the notation used in the
interactive method, let us now briefly describe some terms
used in the reference point-based interactive methods for
deterministic multi-objective problems.

The reference pomt method (Wierzbicki, 1980) is
based on vectors formed of reasonable or desirable
aspiration levels. These reference pomts are used to
derive scalarizing functions having mimimal solutions at
weakly, properly or Pareto optimal points. Let us consider
problem 1:

(hivena vector §", i=L...k of reference levels for each
objective and a vector of strictly positive weights w,, 1 =
1..., k, the achievement scalarizing function defined by
Wierzbicki (1977) is the following:

minimize max| w, (£,60)- 1) | )
Subjectto x€ 8

or equivalently by solving the following problem:

Min o
Stow, (L0 -£)2a, i-l..k &)
XES
An optimal solution to problem 2 with the

achievement scalarizing function s is weakly efficient for
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(MOP) (and efficient if it is unique) (Miettinen, 1999).
Some other achievement scalarizing functions have been
defined mn the literature. Each of them has its own
particularities and drawbacks. An overview of these
functions can be found by Miettinen and Makela (2002).

Stochastic multiobjective preliminaries: The following
stochastic multiobjective programming problem will be

considered in this study:

Min (Z (x, @), Z, (X, ®),..., 7, (x,8))

St. §.(x,0) <0, i=1..,m (4)
Xe S
Where:
x€R" = The vector of decision variables of the problem
® = Random vector whose components are
continuous random variables defined on the set
EcR®

It will be assumed that given the family F of events
that 1s F<E, the probability distribution P defined on F 1s
known, 1.e., for any A€k, the probability of A, P (A) 1s
known. Tt will also be assumed that the probability
distribution, P is independent of the decision variables
Xp,... %, Functions £ (x.0).%,(x,®),..%(x,® are stochastic
objectives defined on R" x E. Functions E&{x® are
stochastic constraints with1 =1,

Since the stochastic constramt do not define a
deterministic feasible set, it is desired that the stochastic
constraints hold with a confidence level B. Thus we have
a chance constraint as follows:

P(g (x,@=<0)=p;, i=l..m

A point x is called feasible if and only if the
probability measure of the event (8(x.®<0) is at least
(Liu, 2008). In other words, the constramts will be
violated at most (1 - B) of time.

Deterministic equivalents: The basic idea in the solution
of any problem of stochastic programming is to transform
the stochastic problem into an equivalent deterministic
problem; equivalent in the sense that a solution for the
corresponding deterministic problem is a solution for the
stochastic problem. Thus, the equivalent deterministic
problem can be solved by using some familiar technique
of linear, geometric, dynamic or non-linear programming.
Let us consider the following form of chance constraint:

P(a(x,m)<0)p

Theorem: Liu (2008) assume that the stochastic vector w
degenerates to a random variable @ with probability

24

distribution @ and the function g (x, w) has the form
g (x:w)=hx)-w Thenprig(x,0)<0}>p ifand only if h(x)<K,,
where K is the maximal number such that:

3

Remark: For a continuous random variable w, the
equation;
Pri{K, <] =1-®(K,)

always holds and we have Eq. &

K, =7 (1-B) (6)

where @ is the mverse function of ®.

Theorem: Liu (2008) assume that the stochastic vector
w={4a,,8,..5,b) and the function g {x, w) has the form:

(7

g(x,m)=ax +a,x, +..+ax, b

If a; and b are assumed to be independently normally
distributed variables, then;

if and only if;

Y Blax, qrws),/iv[ai]xf +V[b]<E[b] @

where @ 1s the standardized normal distribution.

Problem formulation for production planning: Consider
a production planning problem to optimize the gross profit
and production cost simultaneously under the condition
that unit profits of the products, unit production costs of
them and maximal amounts of the resources depend on
seasonal factors or market prices. Product demand 1s one
of the key inputs and a major source of uncertainty to a
production planning problem.

As  such, developmg production
planning that accounts for demand uncertainty 1s
necessary for effectively munning a production facility and
to deal with any specific realization of the demand

stochastic

uncertainty. Such production planmng problem can be
formulated as a multi-objective programming problem with
random variable coefficients expressed by the following
problem:
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minimize 7 (x,0) = ¢ (®)x+o, (o)
minimize z, (x,®) =c, (0)x + o, (o) (9)
k 2 k k

subject to  Ax <b{m),

x>0

Where:

z,1=1, .., k= Objective functions to be optimized.
Such as gross profit and production cost

X = The vectore of decision variables whose
optimal value is not conditioned on
realization of the uncertain parameters.
These are design variables (production
item) for which the problem solved

c(m)+a(w) = Random variable coefficient due to
random cost

A = Coefficient measuring the effect of the
constraint on the decision variable

blw) = Random variable right hand side of the

constramt due to random demand

An interactive stochastic approach based on Reference
point satisficing method through Probability
maximization model

Main features: First, let us introduce some of the basic
ideas of the algorithm which are based on the previous
comments. The first step consists in the transformation of
the problem mto an equivalent determimstic problem by
choosing one of the existing transformation criteria.

An efficient solution to this deterministic problem is
regarded as efficient for the original stochastic one. For
this algorithm, the concept of probability maximization
model has been chosen. Since the problem 9 contains
random variable coefficients, definitions and solution
methods for ordinary mathematical programming problems
cannot be directly applied. Consequently, we deal with
the constraints in problem 9 as chance constrained
conditions (Charnes and Cooper, 1959) which mean that
the constraints need to be satisfied with a certain
probability (satisficing level).

Using the probability maximization model to maximize
the probability that each objective function becomes a
certain value under the chance constrained conditions,
the stochastic programming problems are transformed into
deterministic ones. Assuming that the DM has a
stochastic goal for each of the objective functions, having
determined the stochastic goals of the DM, researchers
present an interactive reference point satisficing method
to derive a satisficing solution for the DM by updating
the reference levels. Assume that the constraints in
problem 9 are in the form Ax<b;, (w), where x is an n

25

dimensional decision variable column vector and A is an
mxn coefficient matrix and b, (w) are random variables
independent of each other. Replacing these constraints
by chance constramed conditions with satisficing levels
. 1=1,....., m along with substituting the minimization of
the objective functions 7, (x, @), 1= 1,...., k in problem 9 for
the maximization of the probability that each of objective
functions 7, (x, @) 18 less than or equal to a certain
permissible level v, the problem can be converted as:

maximize P (x)= Pr[Zl(x, m) < ul]
maximize P, (x)=Pr[Z, (x,®) <u,]

subject to
Pr[alx <b, (W)]Z B,
i (10)
Pr[amx < bm(w)]z B...
x20

where a; is the ith row vector of A and b, (w) is the ith
element of b (w). Denoting distribution functions of
random variables b; (w),1=1,...., m by:

E(r) =Pr[b,(®) <1]
the ith constraint in Eq. 10 can be rewritten as:

Prlax <b (w)]|2B < 1-Prb(w)<ax|
2B = 1-E(ax)=f
< E(ax)<1-f
Sax<F'{1-f)

(11)

Where F,' () means a pseudo-inverse function
corresponding to F, (1) defined as:

E(h)=inf {y[E(y)zh

——

Letb, =F'(1-p,)ther, the problem 10 can be
transformed into the following equivalent problem:

maximize P (x)=Pr[Z (x.@®) <u,]

maximize B, (x) = Pr[Z, (@) <y, | 12)
subject to,
Ax<b,,

X2

=
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Let the feasible region of problem 12 is denoted by S.
After transforming the (SMP) problem in the form of
maximum probability model, the DM has to fix a value u
(aspiration level of the problem’s objective function
involving random variables with a given (known)
probability distribution).

In deterministic reference point-based algorithms, the
DM has to give reference values for each objective. But
in stochastic multio-bjective problems giving a single
value can be misleading, given that the objectives will not
reach a certamn value and there 1s a trade-off between the
risk assumed and the level achieved by the objective
function. The election between two efficient solutions
with different probabilities will depend on the risk level
that the DM 1s willing to assume.

The amm now 18 to help the decision maker to
understand the stochastic nature of the problem, to
discover the risk level, he is willing to assume for each
objective to fix aspiration level of the problem’s objective
function involving random variables with a given
probability distribution and to learn about the trade-offs
among the objectives. The process begins by obtaining
an approximate variation range for each stochastic
objective. Hence, we will ask the DM to fix a confidence
interval (B, Py) for each objective function as; calculate
the values 1; and U, such that:

Pr[Z, (x,@<L,]=p.. Pr[Z,(x. @< U, ]=Pp,, i=1...,
(LU ] |PrlL <z x,@<U,]=(B, —B). i=1..k

This way, the solution obtamned 1s assured to be
probability efficient and we leave room to select the
stochastic range of the objectives. That is why we
will solve the stochastic approach developed by
Caballero et al. (2004), subject to the feasible region
defined in Eq. 12 as follow:

Min u

XU

St P(zk‘lul"l (x,®) < u]— B,

XES

(13)

Where:
B=YuB, Be(01)

and the weights >0 and;

26

Z ) Z® LW
Fig. 1: The subintervales of the stochastic objectives
Bl ﬂz(h) B;Ell)
7} (h) Z () 7 (b}

Fig. 2: The probabilities of the corresponding objective

L takes various values as o<, <1, then a set of efficient
solutions of problem 13 will be obtained. This way, the
DM knows many approximate variation range for each
stochastic objective. Then, the DM is asked to fix a worst
value, Z.° (h) and a best value, Z, “(h) for each objective
and 7Z;° (h) intermediate values. This way, the variation
range of the stochastic objective 18 divided mto
subintervals, as shown in Fig. 1. Based on the previous
information, the expected value efficiency criterion,
subject to the feasible region defined n problem 12 to
obtain an intial solution will be solved as follow:

Min o

St w(Z()-Z)<a, i=1..k

Xe 3

(14)

where Zz; is the expected value of the ith stochastic
objective and the weights;

are obtained from the payoff matrix corresponding to the
expected value equivalent deterministic multi-objective
problem that 1s;

7! =Min (Zi(x)), i=1..k

xel

then for each objective, the algorithm calculates the
accumulated probability corresponding to each value
fixed by the DM, as shown m Fig. 2:

Pr(Z,(x".@) < Z/(h)) =B(h), G=1..k)

Foreachi=1,...., k, the DM is shown the probabilities
of the corresponding objective in the current solution. If
the DM is satisfied with the current objective values, then
x"1s the final solution. Otherwise, he asked to indicate the
new desired accumulated probabilities for some wvalues
Z" (h). Let D" the set of indexes corresponding to the
objectives that the DM wishes to change.
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For each ieD! let S* be the set of indexes
corresponding to the values Z;" (h) of objective 1 for wlich
the DM wishes to change the probability. B (h) be the
new probability assigned to Z7 (h), re S~

Therefore, once the new information is provided, the
following problem 15 solved, where the reference pomnt
philosophy for determimnistic problems 1s adapted to the
(SMP) problem:

Min o
5.t ;,Lf‘.(zi(x)—Zj(h))Scx, Yre S, ieD",
Pr(Z(x. @) <u;)z(h), Yres, isD",

(15)
L AZ ) -Z(M)<o,  ieD",
Pr(Z,(x & <u)205  igD"
Xxe S

Where:

D = The set of indexes corresponding to the
objectives that the DM wishes to change,
for each IeD"

St = The set of indexes corresponding to the
values Z;” (h) of objective 1 for which the DM
wishes change to the probabilities

B (h) = The new probability assigned to 7" (h)

1
b
EEEORAT

that 1s the difference between the worst and best values
given by the DM 1s used as the normalizing factor. The
process goes on until a solution accepted by the DM is
found. Let us now describe the proposed mteractive
algorithm step by step.

Step-by-step description of the proposed approach
Step 1: Ask the decision malker to specify the satisficing
levels P, 1 =1
problem 10.

m for each of the constraints in

Step 2: The algorithm transform problem 10 into the
equivalent problem 12.

Step 3: Ask the DM to fix a confidence interval (B,, By for
each objective function with these informations, solve
problem 13 to obtain an approximate variation range for

each stochastic objective and show these variation range
(th) the DM:

[L, U] |prlL, <2< U ]=(B, B ) i=1...k

Step 4: Ask the DM to fix a worst value, 7;° (h) and a best
value, Z (h) and Z" (h) for each objective.

Step 5: Solve problem 14 to obtain a solution.
Step 6: With thus solution the algorithm calculates the

accumulated probability comresponding to each value
fixed by the DM,

Pr(Z,(x", & < Z/()) =B (h), G=1..k)

The DM is of the
corresponding objective at the current solution. Leth = 0.

shown the probabilities

Step 7: Ask the DM if he satisfied with the current
objective values, then stop. Otherwise continue.

Step 8: If the DM desires to change the scale, then go to
step 4.

Step 9: Ask the DM to indicate the new desired
accumulated probabilities for some values Z;" (h).

Step 10: Solve problem 15 to obtain a new solution
solution. Leth=h+ 1. Go to step &.

The process goes on wntil a solution accepted by the
DM is found.

RESULTS AND DISCUSSION
Consider the following production plarming problem

involving random variable coefficients (3 objectives, 10
variables, 7 constraints):

minimize (c'2 +t, (W)ci)x +(oc'2 +, (W) o )
minimize (cg+t3(w)c§)x+(oc3+t3(w)oc§)
subject to;

ax<hb (w),

a,x<b, (w),

a,x<b,(w),

a,x <b, (w), (16)

a;x<b; (w),

a,x<b, (w),

a,x <b, (w),

xX20
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Table 1: Constant coefficients of objective fimctions in 16

c,! 19 48 21 10 18 35 46 11 24 33 a,! -18
c? 32 21 4 3 1 2 4 2 a;’ 5

;! 12 -6 -23 -38 -33 -48 12 8 19 20 a,! =27
c;? 12 42 2 1 2 1 2 1 a° &

;! -18 -26 -22 -28 -15 -29 -10 -19 -17 -28 a;! -10
s’ 21 32 1 2 3 3 2 1 a5 4

Table 2: Constant coefficients of constraints in 16

a 12 2 4 -7 13 -1 -6 6 11 -8
ay -2 5 3 16 6 -12 12 4 -7 -10
a3 3 -16 -4 -8 -8 2 -12 -12 4 -3
ay -11 6 -5 9 -1 8 -4 6 -9 6
as -4 7 -6 -5 13 & -2 -5 14 -6
a5 5 -3 14 -3 -9 -7 4 -4 -5 9
a7 3 -4 -6 9 6 18 11 -9 -4 7

In this problem, t; (w), t, (w) and t, (w) are Gaussian
random variables. N (4, 2%), N (3, 3% and N (3, 2%), where
N (a, %) stands for a Gaussian random variable having
mean « and variance 3.

The right-hand side b, (w), 1 =1,..., 7 are also Gaussian
random variables N (164, 30%), N (-190, 20%), N {(-184, 15%),
N (99, 22%), N (-150, 17%), N (154, 355, N (142, 28%). On the
other hand, constant coefficients in the problem are
shown in Table 1 and 2.

According to step 1, the DM fixes the satisficing
levels P, 1=1, 2,.., 7 for each of the constraints in
problem 16.

The hypothetical DM 1n this example specifies the
satisficing levels as (P,-B,)" = (0.85,0.95, 0.8, 0.9, 0.85, 0.8,
0.9)", respectively.

The process begins by obtaining the following
confidence intervals for each objective, assuming that the
DM wants a 90% confidence intervals :

P(1564.15<7,(x) £2567.87) = 0.9
P(115.1 <7,(x) 5832.6) =0.9
P(~1433.19 < Z,(x) < ~640.82) = 0.9

Given this imformation, the DM 1s asked to establish
the subintervals.

Let us suppose that the DM divides each range
length (very
poor, very good), the
mdividual mimmum Z;, i=1,2,3 of the expected value
calculated under

subitervals of equal

fair, good and

mto negative
poor,

for each objective functions are
the chance constrained conditions corresponding to
the satisficing By solving the following
problem:

levels.

28

Minimize E(Z,(x,&(w))), 1=123

subject to;

Each value is obtained as:
7 =1819.62, 7, =252.52, 7; =-1121.26

Taking the expected values of each objective

function as:
F =1819.62, F, =25252, F =—-1121.26
The reference levels and weights:
ul = 1 o123
I
wi= 5811.28’ n2= 523%665’ “3=$

with these data, solve problem 14. The first soluton
shown to the DM is x* = (15.96,1.662,0,1.2, 0, 6.67, 0.518,
14.122, 236, 18.47)" next the algorithm obtains the
probabilities associated to these intervals at the current
solution. These data are shown in Fig. 3.
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Fig. 3: Intial solution of the problem

Assume that the DM wants to improve the
probability for the first objective to be fair, good and very
good, while he allows to impair objective 2 and 3 by

setting the following probabilities (Fig. 3):

Objective 1:

P(F1 (x,c) < 1800) >0.6 andP(F1 (x,0) < 2000) >09

20

0.85
»
Obj. 1 0.6 >
036
015 0.25 024 035 | 001 _
T VG G F p 1l v 7
1600 18?0 2000 2565
; ! i
< o i |
H
“ 0.64 14 ;
i
< 0.99 )
0.99
R >
Obj. 2 0.92
P
045
0.01 0.07 047 034 | o011
T VG G F p | wvp 7
120 300 600 830
R
0.08
-
0.55
“ 0.89
0.98 >
Obj. 3 0.7 >
0.18 >
002 0.28 0.52 01 | 008
< I >
VG 400 © 00 F o950 T o0 VP
“ 03
-
0.82
-+
0.92

Fig. 4: Optimal solution of iteration 1

Objective 2:

P(fz(x,c) 3830) 205
Objective 3:

P(ﬂ(x,c) < —640) 205

Given these values, problem 15 is solved and the
optimal solution is x' = (14.189, 1.376, 0, 0, 0, 5.063, 0.0783,
15.098, 2.525, 18.429]" with the additional information
shown in Fig. 4.

Tt can be seen that objective 1 has been improved,
while objective 2 and 3 have become much worse,
although the desired probabilites have not been
achieved. Let us now suppose that the DM decides to set
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Fig. 6: New scale and probabilities for objective 3

anew (more realistic) scale for objective 2 and 3. The new
subintervals and the corresponding probabilities at the
current solution are shown in Fig. 5 and 6.

After seeing the new wvalues, the DM wishes to
increase the probability for the second objective to be
good and very good values by assigning the new

probability:

Objective 2:
P(fz(x,c) < 650) >08

(Given that no probabilities have been changed for the
first and the third objective.

Objective 1:

P(fi(x,c)<u}}>0.5
Objective 3:

P(f,(x0) <ui}205

Tteration 2: The above relations are incorporated to
problem 15, Its optimal solutionx® = (14.5299, 1.603, 0,0, 0,
5.344, 0.0899, 14.86, 2.234, 18.262)". And the corresponding

30

4(1):22-31, 2010

0.87

Obj. 1 >
0.66 >
o 0.21 0.28 037 | 001
-~ I -
Ve 600 € 1800 F oo P ooses VP
]
< i
0.34
< i
e |
0.62 i
< :
0.99
0.58
Ohj.2 >
025
0.14 >
- >
< 4 03 0.1 007 | o007 o
vG G F Pl ve
500 650 750 820
i
i
< 0.75 i
:
0.86 ’
< 3
0.93
0.84
) >
Obj. 3 0.29
>
12
02 »
0l 0.5 0.1 004 | 008 _
T I -
VG G P VP
-1200 -830 =700 -640
i H
< i :
0.71 i
i
0.88 i
i
“ 0.92
Fig. 7: Optimal solution of iteration 2
0.5
} >
Obj. 1
= 0.12 >
: >
05 0.2 0.18 011 | 001
< I >
V6 900 O 2050 2230 T zsiss ve
07 i
0.88
0.99

Fig. 8: New scale and probabilities for objective 1



J. Modern Mathe. Stat., 4 (1): 22-31, 2010

data are shown in Fig 7. Let us suppose that the DM
decides now to change the scale of objective 1 and make
it more realistic as well. The new scale and the
corresponding probabilities at the current iteration are
shown in Fig. 8.

CONCLUSION

In this study, we focused on multiobjective
production planning problem nvolving random variable
coefficients. After the formulation as the probability
maximization model, we mtroduced stochastic goals to
consider the ambiguous judgements of the decision maker
and proposed an interactive stochastic approach based
on reference point satisficing method as a fusion of
stochastic approaches and deterministic ones to derive a
satisficing solution for the decision maker from the
efficient solutions obtained. The proposed approach
enable the DM to learn in depth the features of the
problem to evaluate the consequences of each decision
and to know the trade-offs between the levels and the
probabilities, mside each objective function and also
among them. Among the different kinds of existing
mteractive methods for multiobjective problems, the ones
based on the reference point scheme have proved to be
particularly useful in order to favor the DM’s learning
process. The proposed approach is an extension research
of Munoz and Ruiz (2009) with some modefications, where
we aaproximate the stochastic vanation range for each
objective by applying the stochastic approach developed
by Caballero et al. (2004) with any desired confidene
interval assigned by the DM. The graphical
representation of the probabilities associated to the
different levels of the objective functions allows the DM
to have a clear idea of the whole variation range of each
function, as well as to understand the risk level that is
assumed with each decision. Besides, the DM can modify
the interval scales anytime and this fact, together with the
elicitation of preferences in terms of probabilities makes
the comparison among selutions easier and therefore, it
facilitates the complex decision process within a random
enviromment. This interactive method can be used to
solve both linear and non-linear multiobjective problems
with continuous random parameters. An application of
production planning problem involving random variable
coefficients in the objective function and constramts
demonstrated the feasibility of the proposed method.
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