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Abstract: This study deals with the construction of Pair-wise Balanced Incomplete Block Designs (PBIBD). We
developed a non-linear non-preemptive binary integer goal programming model for the construction of PBIBD
for any set of parameters (b, k, t,r, A). The model so developed is tested using two set of parameters (b = 4,
k=4t=3r=3A=2and(b=7k=7,t=3,r=3, A=1). Tt is shown that the PBIBD is not unique for any given
set of parameters and that the design obtained by our model 1s D-optimal.
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INTRODUCTION

Statistics deals with variability and how it can be
controlled. In planning and conducting experiments, one
of the factors used in controlling variability is the
grouping of the experimental units into homogeneous
sub-groups called blocks. There are many ways of
blocking the experimental umits n a comparative
experiments with k treatments. If homogeneous blocks of
size k are available to accommodate all the k treatments, a
Randomized Complete Block Design (RCBD) 1s used.

In many situations, experimenter may not be able to
run all the treatments combinations in each block, may be
due to shortage of experimental materials or physical size
of the block, that 1s block size t 1s less than the number of
treatments k. In such situations, an incomplete block
design 1s used by Quunoulli (1953) and Motgomery (1976).

When all treatments comparisons are equally
unportant, the treatment combination used in each block
must be selected 1n a balanced manner. Several methods
for constructing balanced incomplete block designs are
available (Federer, 1993, 1998; Khare and Federer, 1981,
Patterson and Williams, 1985, 1976).

Also, there are computer software packages and
toolkits, which will construct optimal or near optimal
balanced incomplete block designs (Nguyen, 1993a, by
1994, 1997; Nguyen and Williams, 1993; Federer et al.,
1998). Tables of balanced incomplete block designs are
given by Fisher and Yates (1953), Davies (1956) and
Cochran and Cox (1957).

Each of the methods, toolkits and tables has its
own limitations. To overcome these lumitations, we
developed in this study a non-linear non-preemptive goal
programming model for the construction of the balanced

incomplete block designs. Constructing a balanced
incomplete block design 1s equivalent to constructing a
design matrix.

PATR-WISE BALANCED
INCOMPLETE BLOCK DESIGNS

A randomized incomplete block design is said to be
pair-wise balanced if treatments combinations are selected
in each block so that every pair of treatments occur
together in the same number of blocks. Suppose we to
compare k treatments, the maximum number of blocks b
required to construct a pair-wise balanced incomplete
block design with only t treatments appearing in each
block is b = (l/t) (Montgomery, 1976).

Let each of the k treatments appear in r of the b
blocks and let every pair of treatments appear together in
A blocks, then a pair-wise balanced incomplete block
design must satisfy the following conditions:

Kr=0bt
t<k
b=r

bzk
A= =0 is an integer
k-1

The design is called incomplete in the sense that t<lk
and is balanced in the sense that the parameter A is
constant. If the b =k, the design is said to be symmetric.
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Ab by kmatrix X = (x;) is called a design matrix for
the pair-wise balanced incomplete block design with
parameters, b, k, t 1, A, if x; = 1, if treatment j appears in
block I, x; = 0, otherwise

Mx,=ti=1,2,3,....,b (1)
1=1
b
>x,=1,j=1,2,3,...,k (2)
1=1

b

Zxﬂxmzl,m>l=1,2,3,...,k (3

1=1

The matrix X™X is called the information matrix or
the matrix identity of the design. It has been shown that,
X™ = {r— AT+ AJ, where T is a b by b identity matrix and
Tis b by b matrix of 1’s (Federer, 1998).

A design 13 called a D-optimal design if the
determinant of its information matrix is greater than or
equal to the determinant of the information matrix of any
alternative design (Hedayat and Pesotan, 2006).

GOAL PROGRAMMING

Goal programming is a mathematical tool for the
analysis of problems nvolving multiple but conflicting
objectives (Igmzio, 1978). The basic approach of goal
programming is to establish a specific numeric goal for
each of the objectives, formulate an objective function for
each objective and eek a solution that minimizes the sum
of deviations or sum of weighted deviations.

Let fi(x) denote the lth objective and G; be the
specified target value for the objective. Basically, there are
three possibilities for the relation between f,(x) and G,
namely (Fiselt et al., 1987):

f(x)<Gy
£(x)2G,
fi(x) =Gy

In the first case, the objective is to minimize the
underachievement, that is negative deviation from the
goal target, designated d ;.

In the second case, the objective is to minimize the
overachievement, that is positive deviation from the goal
target, designated d',.

In the third case, the objective is to mimimize the
underachievement and overachievement simultaneously.
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In any of the three cases mentioned above the goal
constraint 1s stated as £;(x) + d", - I = G, (Eiselt ef al ,
1987).

When all the goals are of equal importance, we tall of
non-preemptive goal programming. But when the goals
are not all of equal importance, there is ordering of priority
levels for the goals and we talk of preemptive goal
programming. Goal programming can also be classified as
linear or non-linear. For a non-preemptive linear goal
programming the solution technique corresponds to the
standard simplex methods of solution. In a preemptive
case, there are two general approaches to the solution of
linear goal programming, namely the sequential linear
programming algorithm and the multiphase simplex
method. These two methods are described by Eiselt et al.
(1987).

DEVELOPMENT OF THE MODEL

The following indices, variables and constants are
required in order to formulate the model.

Indices:

i = Block’s index

i = Treatment’s index

1 = Treatment’s index

m = Treatment’s index

Variables:

r'; = Positive deviation from the rth goal’s target for
each treatment j

r; = Negative deviation from the rth goal’s target for
each treatment j

t, = DPositive deviation from the tth goal’s target for
each block i

t; = Negative deviation from the tth goal’s target for
each block i

A = Positive deviation from the Ath goal’s target for
each treatment pair (1, m)

A = Negative deviation from the Ath goal’s target for
each treatment pair (1, m)

x; 1 = If treatment j appears in block I, 0, otherwise

Constants:

b = Number of blocks

k= Number of treatments

t = Number of treatments in each block

r = Number of blocks each treatment appears

A = Number of blocks each pair of treatments

appears together

Based on the above definitions of indices, variables
and constants, the goal objectives are as given in
Eq. 1-3.
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The corresponding goal constraints are as follows:

—t =ti=1,2,3 b (4)

-

k
Six, ot
1=1

k
Mxy (%)
1=1

-1 =r,j=1,2,3 ...,k

— i = A ©)

b

.
inlxim + Ay
i

m>1=1,2,3,...,k

The model 15 therefore,

ZZ(?U +7L1m)} N

m>l1=1

k b
Min{z (! =)+ >
j=1 i=1

¥ =0orl (8)
Subject to:
i=1,2,3,....bj=1,2,3,.. .k
©Lr=0,j=123,.. ..k @
ot =0,1-1,2,3,...,b (10)
A A >0m>1=1,2,3,.. .,k (11)
TESTING THE MODEL

Inputting the parameters of the following designs
mto the model and solving via the available computer
software packages we obtamned the design matrices.

b=4k=4t=3r=34=2
The soluttonisx,; =0, %x,=1,x;=1,x.,=1,%x;, =1,
=L Xm0 X =Lk =L =% =1 =0x, =1,
=0 %=1 x,=1.
Therefore, the design matrix is:
01 1 1
1101
X = (12)
11 1 0
1011
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The corresponding design is therefore,

Treatments
Block 1 2 3 4
1 #® * #®
2 #® #® #®
3 e e *
4 # * #
b=7.k=7,t=3r=34=1
The solutionis x, =1.x,=1.%x;=0,x,=1,%x,; =0,
K= 0,x5=0,%5 = 0% = 1%, = 1,35, = 0,3, = 1, X =0,
Xp= 0,%5 =0, x5 =0, %55 = 1, %3 = 1, X35 = 0, %5 = 1, %5, =0,
70X4270X43 0%y = 1% 1, %, =0, %= 1. %, = 1,
=0x5=0,%54=0,X;5 = L% = 1, X =0, %, =0, x5, = 1,
=0, %4 =0.%5=0, %= Lx7=L %y = L% =0, x5 =11,
K= 0, %5 =0, X =0, x5, = 1.
The design matrix is therefore,
1101 000
0110100
0011010
X =100011°01 (13)
1 000110
01 00011
1 010001
The corresponding design is:
Treatments
Block 1 2 3 4 5 i} 7
1 # W #
2 e * e
3 * * #®
4 * W *
5 * e e
6 #® #® *
7 * * *
ALTERNATIVE DESIGNS

The balanced incomplete block design is not unique
for a given set of parameters, b, k, t, r, A. Alternative
designs for the same set of parameters can be obtained by
interchanging rows or columns of a design matrix.

Theorem 1: If X, and X, are two design matrices for the
same pair-wise balanced incomplete block design, then
their information matrices are equal.

Proof: In the product X", a diagonal entry is the inner
product of X with itself.
That 1s,
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b

b
> =00x,=rj=L2,. .k

1=1 1=1

Also in the product X", an off diagonal entry is the
mner product of columns of X. That 1s,

b
XXy =Am=1=1,2,..k

1=1

Now if any two rows or any two columns of X are
mterchanged, the diagonal entries and the off diagonal
entries remains unchanged. Hence,

XTX1 = X-zrxz

Theorem 2: Every pair-wise balanced incomplete block
design satisfying the set of parameters is D-optimal.

Proof: Since, all the information matrices of the a design
are equal and the determinants of equal matrices are also
equal, it follows that every pair-wise balanced incomplete
block design 1s D-optimal.

CONCLUSION

In this study, some of the contributions made in this
study towards the construction of pair-wise balanced
incomplete block designs is summarized. First, the
concepts of balanced incomplete block designs, design
matrices, information matrices and D-optumality are
reviewed. We developed a non-linear non-preemptive
linear goal programming model for the construction of a
D-optimal pair-wise balanced incomplete block designs.
We observed that the design is not unique under the
same set of parameters and that alternative designs can be
obtained from a given design by interchanging rows or
columns of the corresponding design matrix. The model
developed in this study have been tested for the existence
of feasible using two sets of parameters, b =4, k=4, t =3,
r=3,A=2andb=7k=7,t=3,r=3, A =1. The scluticns
to the models were obtained using an optimizer in a corel
quarttro pro computer software package.
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