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Abstract: Some derivations of continuous lmear multistep methods are given in this study. The study provides,
the use of both collocation and mterpolation techniques to obtain the schemes. Rather than using Chebyshev
polynomials as basis function as it was always done in the past, we introduced the use of direct form of power
series as an alternative to the derivation of these schemes. Multistep methods have over the years been one
of the most popular and acceptable methods for generating solutions to imtial value problems of ordinary

differential equations.
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INTRODUCTION

Over the years, several researchers have considered
the collocation methods as ways of generating numerical
solutions to Ordinary Differential Equations (ODE).
The collocation method 1s dated as far back as 1956 n
the research carried out by Lanczos (1956) and Brunner
(1996).

Lanczos (1956) mtroduced the standard collocation
method with some selected pomts. However, Fox and
Parker (1968) introduced the use of Chebyshev
polynomials in the collocating the existing method,
which was captioned as the Lanczos-Tau method. Also,
Ortiz (1969) went on to discuss the general Tau method,
which was later extended by Onumanyi and Ortiz (1984) to
a method known as the collocation Tau method. The
standard collocation method with method of selected
points provides a direct extension of the Tau method to
linear ODEs with non polynomial coefficients. The
collocation Tau method however, uses the Chebyshev
perturbation terms to select the collocation points.
Okunuga and Onumanyi (1985, 1986) gave the generalized
Tau method, which permits exact fractional values in the
computation with >1 t-term as perturbation on the right
hand side of the linear differential equation. This was later
extended to non-linear differential equations with some
linearization being introduced on the Tau method by
Okunuga and Sofoluwe (1990).

Other researchers such as Onumanyi er al. (1993),
Ademyr and Alabi (2006) and Fatokun (2007) have
however, mtroduced some other variants of the
collocation methods, which recently led to some

continuous  collocation approach. The introduction of
the continuous collocation schemes as against the
discrete schemes includes the fact that better global error
can be estimated and approximations can be equally
obtained at all mterior pomts. Furthermore, the
introduction of the continuous collocation method has
been able to bridge the gap between the discrete
collocation methods and the conventional multistep
methods. Thus, it 1s possible to write the Linear Multistep
Methods (LMM) in form of some continuous collocation
schemes.

Various techniques have been suggested for the
derivation of linear multistep methods. In this study, we
propose the use of generalized power series as a basis
function on the collocation method, which will lead to
some contimuous collocation schemes and are easily
linked to the Linear Multistep Methods (LMM).

GENERAL COLLOCATION METHOD

It 1s a known fact that the Linear Multistep Methods
(LMM) have over the years being very useful in
generating solutions to IVP in ODEs.

Consider the Tnitial Value Problem (IVP) Eq. 1:

¥(x) = F(x, y()), (%) =¥, (1

The Linear Multistep Methods (LMM) for solving the
IVP Eq. 1 can be developed by some collocation and
interpolation techniques.

The general k-step method or LMM of step number k
given by Lambert (1973) is written as:
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k
N oy, =hY B, 0, #0 (2)
j=0 =0

where:

eyand f, = Uniquely determined

h = The step length

Such that

Xpyy — %, =0h

The Linear Multistep Methods (LMM) generate
discrete multistep schemes Eq. 2, which are used for
solving the TVP Eq. 1.

There have been various forms of the LMM, which
were Henrici (1962), Lambert (1973), Fatunla (1988) and
Butcher (2003).

Many of the linear multistep schemes given by Eq. 2
have been proved to have satisfied some stability
conditions. Due to the nature of various problems, other
variants of the LMM do exist in the study. Some of these
include the hybrid LMM, second derivative LMM and the
general multiderivative LMM (Okunuga, 1999, Lambert,
1991; Butcher, 2003). These are variously developed to
unprove the accuracy of the results being obtained when
solving the IVP Eq. 1 and other higher order linear ODEs.

Thus, the continuous collocation approach, which
require collocating at some points x, of the linear k-step
method Eq. 2 is rewritten in continuous form as:

Y ay,., ~h 3B O, 3)

where, 3(x) is now defined as a function of x and it is
continuously differentiable at least once. In this study, we
developed continuous multistep collocation
methods with some collocation pomnts taken at the grid

points using some form of series or polynomials (x - x;)"as

SOINC

the basis function.

Power series collocation: The Taylor polynomial is the
ultimate in osculation. For a single argument x,, the values
of the polynomial and its first n derivatives are required to
match those of a given function y(x) that is:

p(r)(xu) = y(r)(xu), i=0,12,...n

The existence and uniqueness of such a polynomial
is well known and they are classical results of analysis.

The Taylor formula settles the existence issue directly
by exthubiting such polynomial in the form Eq. 4:
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n (r)
po =3y @

r=0

Analytic function has the property that for n-e, the
approximate function p (x) reduces to y (x).

Based on this argument, we propose a polynomial
series in form of Eq. 4 as the basis function for deriving
the LMM.

In the research, Onumanyi et af. (1993) derived some
finite difference methods that lead to some linear multistep
methods for the solution of imtial value problems
ordinary differential equations of the form Eq. 1. By
appropriate selection of points for both interpolation and
collocation, many important classes of finite difference
methods
generated. These authors also used a collocating function
of the form:

n
were recovered and new methods were

v
yix)= Eothk
k=0

Adeniyi and Alabi (2006) derived the continuous
LMM by using some Chebyshev polynomial function as
a basis function. The researchers proposed a collocating
function of the form:

ok X—X
Y(x)= Ea]Tj(x)[Tkj, Ry SXEX
1=0

where, T(x) are some Chebyshev functions, which are
used as basis function.

We however, propose in this study a basis function
of the form in Eq. 5

y(X):ia](X—xk)r (5)

which 1s mn form of Eq. 4 and will be shown to have
identical results and methods with the research of other
previous researchers. We are able to generate more
methods by our new approach, which makes this different
from other previous reseaches. Equation 5 proposed here
shall be used for both collocation and interpolation
techniques that the methods may require.

The use of this basis function will permit us to derive
some continuous LMM
consecquently the discrete formulas are also obtained. We
shall make comparison of owr methods with those
generated by using the Chebyshev polynomials. The
power series (Eq. 5) permit smooth functions in which a’s
are suitably determined by collocation techmiques, so as
to generate some LMM in continuous form.

of wvarious orders and
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LINEAR MULTISTEP METHODS

The LMM have over the years been very useful
in generating solutions to IVP m ODE. There has been
various form of the LMM, which were derived by Lambert
(1973, 1991), Fatunla (1988) and Butcher (2003). All of
these schemes given in the form of Eq. 2 are in discrete
form. Among the existing methods of deriving the LMM
in discrete form include the interpolation approach,
numerical integration, Taylor series expansion and
through the determination of the order of the TMM.
These various techniques were developed over the years
because no single approach can really produce all existing
multistep schemes. There are still some schemes that can
be written in the form of Eq. 2 by fixing certain values for
the coefficients of y(x) and f(x,y) which may not be easily
obtamned by the techniques shown above. Hence, the
need to seek more approaches of deriving these all
unportant schemes.

Tt is also useful to note that many of these schemes
have been proved to have satisfied some stability
conditions. Due to the nature of various problems, other
variant of the LMM exist also in study. Some of these
include the second derivative LMM. These are equally
developed to improve the accuracy of the numerical
results being obtained when solving the IVP.

In this study, we shall develop the continuous form
of the LMM, which permits collocating at various points
rather than the usual discrete formulas.

The derivation given in this study 15 quite different
from the usual techniques given by Lambert (1991, 1973)
and Butcher (2003), but will end up to yield the same
LMM, which m this study could be written both in
discrete and continuous form.

Definition 1: Consider the IVP,

Y =Ly, y(x ) =y,
XE (XY, ) y(x), flxy)e RE

Where, we assume that there exist some Lipschitz
constant L. such that:

)

Hf(x,y) - f(x,z)” < L||y -z
VLY, (X, 2)E (X, ¥, )< R™

This inplies that the IVP has a unique solution.

Definition 2: The first characteristics polynomial of the
LMM Eq. 2 1s given by:
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p&)=Ya

The metheds for which p () = £* - E¥' are called
Adams methods, while those that have p(E) = E* - £ are
the Nystrom methods.

Derivation of continuous LMM: Consider the polynomial
function:

Tl
yix) = Eaj(x -x, ) =y(®), X, SXEx,,,

i=0

over each of the sub-interval (x,, %) of (a, b) where, M is
appropriately chosen. This shall be used as basis function
to derive some LMM in the continuous form.

The technique, which 1s being employed 1s using the
trial or basis function:

n+l

Y(x)= -x )=
(9=3a,(x-x.) =¥ ©
X SXEX
This satisties the unperturbed ODE:

Y =fyx), % $x2x,

Y{x, ) =Y,

7

Collocating Eq. 7 at (n+ 1) points x,;,] =0,1, 2,..n,
and interpolating the trial polynomial (Eq. 6) at x, to
give the required (n + 2) equations for the unique
determination of ¢

Doing this, we write

flx,,)=f. . i=012,..
Y{x)=7Y,

(8)

Toderive a one step LMM, wesetn =1, m Eq. (6),
so that

Y(x)=a,+a{x—x)+a(x—x) o)
From Eq. &, we have:

Y'ix,)=f,
Yixg, 0=t (10)
Y(x,)=Y,

Using Eq. 9 in 10, we obtain the 3 equations:
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Y(x,)=a, =Y,
Y(x,)=a =f,

Y(x,, =8, + 2a,(x,,, — %)=L,

Representing this in the matrix form to get:

10 0(a, Y,
0 h 0 ||a |=| hf,
0 h 2h’lla,| |hf

z k+1

On solving, ¢, is determined as:
£, —Ff
a2 _ k+l k

2Ky —Xy)

Substituting in Eq. 9, we obtain:

£, —F§
YR) =Y, +f,(x—x A (x-x )" (1D
2(Xyyy —X,)
Equation 11 1s the continuous formulation of a one
step method.
To obtain its discrete form, we evaluate at x = x,,,:

f1:+1 — fk

Y(x,,) =Y +f(x,, X )+t ———
20X,y %)

(Xk+1 Xy )2

Which, reduces to:

h
Yoo — Y :E(fk+1+fk) (12)

Equation 12 1s the well-known trapezoidal method of
order 2 and 1t 1s an mnplicit one-step scheme.

On the other hand, 1f we put x = x,,, mEq. 11, we shall
obtain the scheme:

Y,

k+2

~Y, =2hf,

+1

This 1s a two-step linear scheme and which 1s called
the mid-point rule.

We can also derive some other two step methods by
setting n = 2 in Eq. 6 that is:

Y(x) :ia](xka)j (13)

This leads to:
Y(x =1,
Y’(an) =fi
Yx,,,) =1,
Y(x,)=Y,
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This in turn is rewritten to include a; as:

Yi(x,)=a, =Y,
Yi(x,)=a =1
Y’(Xkﬂ) =3a,(x,, — X, )2 +2a, (X, —X,)+a,

V(%) =385 (X — X )+ 28, (X, — %)
Representation on a matrix, yields the system:

0
0
2h?
4h?

Yk
hf,
hf,

k+l

hf,

k+2

=

3h’
12h’

o o o —
== -
R oo

Solving for a, and a,, we obtain:

1 1
a,=———[ Lf , +2f,, —3f
2 2(Xk+1_xk)[ 3 Tk+2 k+1 2 k]

1

4, =———
6(x,,; — X, )

(fk+2 B 2f1:+1 + fk)

Substituting for o, ¢, ¢, ¢ in Eq. 13, we obtain:

1 1 3
Yx) =Y, +f(x-%x)+ _{_fmz +2f 4 _fk:|
Zh| 2 2 (14)

1
(x _Xk)z + a[fku -2, F fk](x _Xk)3

Evaluating at x = x,,,, we obtain the discrete form of

Eq. 14 after simplification as:
Yoo, — Y, :%h[fk+2+4fk+1 +fk] )
Which 1s the Simpson’s method, while Eq. 14 is the

continuous formulation of the discrete scheme Eq. 15 and
it is known to be of order 4 (Henrici, 1962).

The N-step optimal order: We shall at this point consider
in a general form a LMM of optimal order with n steps.
We consider our trial polynomial Eq. (6) that is:

n+l

Y(x)= Eaj(xka)J

On substituting into the TVP (Eq. 1) and collocating at
n+ 1 points %, ] = 0, 1, 2,..., n and interpelating at x, to
give a (n + 2) systems of equations for the unique
determination of:
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a,'s, i=0,1,2,.,n+1

We shall obtain:

n+l

Y00 =a,,(x-%) (e e, (e
+a(x—x ) +a,(x—x V+a(x—x)+a,

Y =n+Da,,(x-x) +m, &%) +@0-Da x-x 7

+3a,(x—x V' +2a,(x—x)+a, =f( V)

Interpolating at x, and collocating at =, X, % 5 ...
Kyrp We Obtain:

Y(x,)=a, =Y,

Y(x,)=a =1,

Yix,,)=(m+Da_,(x,., —x )" +na (x_, —x )" +..

+3a,(x,,, —xk)2 +2a,(x,,, —x,)+a =1,

Yix,,,)=(n+Da_,(x,, %) +na(x,, —x )" +..
+3a,(x,,, —%. ) +2a,(x,,, % )+a =1,

Yix,,,)=(n+ba_,(x,,,—x )0 +na (x,,—x )" +..
+3a,(%,,, — %, )"+ 28, (X, — X )t 8

V(%0 = 0+ DA (6, — %, )"+ 0, (X, — %)% 4o

2
38, (X, — X ) +28,(Xy,, —X )+ a, £y,

This leads to:

8 =Y,

ha, =hf,

(n+Da,,h" +ma b+, +3ah’ +2ah’ +ah =hf,
Z(m+Da, ™ + 2 na b+ + 2 3ak’ + 22,0 +a,(h) =hf,.,
3" -(n+Da,h™ +37 mah’ +.+3 -3ah’+3-2a.h’ +ah =hf,,,

(n+1)-n"-a,  h" +n"-ah" +..+10 -3ah’ +n-2ah’ +ah =hf,

1+l

Representing this in a matrix form, the following is
deduced:

1 0 0 0 0 0 0

0 h 0 0 0 0 0

0 h 2n 3 nh® (n+ D"
0 h 2.20% 293 2nht 2% (n+ Dh?
0 h 3-20° 33K ¥oh' 3 .(nt Db
0 - : : : :

0 h n-Zh* n’3h’ n°oh®  (n+1)-n"h""
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a, Y,
a hf,
a, hf, .,
a, |=| hfy,
a, hf, .,
an + hfk 0+l

This can be solved using numerical solvers for the
independent solutions of ¢y, «,, ...¢¢,,. When, the values
of &y, «,, ...¢,,, are substituted mto the basis function, the
result obtained gives the continuous formulation of the
linear multistep method, while specific evaluation at poimnt
X gives the discrete equivalent.

Derivation of classes of Adams methods: We shall fiwther
construct some continuous schemes which yield classes
of Adams Methods. The Adams methods are broadly
classified into two, namely Adam-Bashforth (explicit)
schemes and Adam-Moulton (implicit) schemes. Thus, for
the IVP Eq. 1, the technique involves secking the trial or
basis function in the form.

Y(x):Zaj(x—Xk)] =y(x), X, €X <X, (17)
1=0
Thus satisfies the unperturbed equations:
Y(x) =flx,y(x)), x, <x< Xy (18)

Y ) =Y,

Colleocating Eq. 18 at npomts x,.,,j = 0,1, 2, ..., (n-1),
and interpolating the trial polynomial HEq. 17 at the x,,, to
give the required (n + 1) equations for the umque
determinationof ¢, = 0,1, 2, ., n

To derive a one step Adam-Bashforth scheme, we set
n=1mEq. 17 and using Eq. 19, we have:

Yix,) =1,
Y(x,) =Y,

Using the basis function Eq. 17, we obtain:

Y’(Xk) =a, =f,
Y(x,)=a, =Y,

Representation on the matrix yields:
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Y,
fy

it

and « , in the basis function

1 0%fa,

0 1)l a

On substituting o,
(Eq. 17), we have the continuous formulation as:

Y(x) =Y, +f,(x —x,) (19)

Evaluating at x,,,, we obtamn the Euler explicit method:

Y (20

k+1

=%, +hf,

Similarly, for a 2-step Adam-Bashforth method, set
n =2 m Eq 17. Interpolating Eq. 17 at x = x,,, and
collocating the derivative of Eq. (17) at x = x,, we obtain
the following equations.

Y, ) =a, ta, (%, —x)+a,(x,, 7Xk)2
Y(x)=a,+2-a,(x—x,)
Y(x,)=a =1,

Y’(Xkﬂ) =a,+2-a,(X,, —X,)

Solving, we get:

h
a; = Yy _E[fkﬂ + fk]
1
a, = ﬁ(fkn _fk)

This gives the continuous method as:

h
Y =Yy T F R HAL(X—x,
(x) 2[ + ]+ fi(x—x,) 1)

1
+E[fk+1 7fk](x -x,)

Evaluating at x = x.,, we obtain the discrete form
as:

Y (22)

k+z

h
=%, +5(3fk+1_fk)

k+l

Equation 21 is the continuous formulation of the two
step Adams Bashforth scheme and the discrete form is
given by Eq. 22.

N-step Adams Bashforth scheme: Usmg the trial
polynomial Eq. 17 and substituting into the ordinary

differential Eq. 1, collecating at npoints x,,,j=0,1,
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2, ..,n-1 and interpolating at X, togetan(n+ 1)

systems of equations for unique determination of

o'j=0,1.2, .,n
Doing this, we obtain:

Yx)=a,(x—x.) +a,_ x—x 0" +..
+ta,(x—x,rt+a,x-xY+ax-x)+a,
Yix)=na (x—x " +n-Da,_(x—x 0 +..

+333(X*Xk)2 +2a,(x-x,)t+a=[{(xy)

Interpolating at x,..., and collocating at Xy, X1, Xiwzs o
Xy, We Obtain.

Interpolation:

V(%)= Yoy =8, 8y — %, P 2 (K —% 7

taX, Xk)3 e, Xy 7Xk)2 ta (X, X )t

Collocation:

Y'(x,)=a, =1,

Y%, ) =na, (%, —X, 0" +.. +3a,0x,,, —%, )V
+2a,(x,,, — % )+a =1,

Y’(an) :nan(xk+2 7Xk)n_l . +3az(xk+2 7Xk)2
+2a,(x,,, %X, )t+a =1,

Y(x,,,)=na (x,,, %, 0" +..+3a8,0x,, %,

+28,(Keys — X )t ey =Ty,

Y%, )=na{x, , —x )"+ +3a,(x,  —x)
+2a,(X,,,, X 0ta =f,.
(n—1h%a, + (m—1*"h*"a,, +..+ (n-1Yh’a,
+{n—-1¥h’a, + (n—Dha, +a, = Y,

kin-1

Multiplying the collocations by h, we obtain:

ha, = hf,

na h"+ ..+ 3ah’ + 2a,h’ +ah =hf,

2" 'na h" +..+2°3a,h’+2.2a,h> + a,(h) = hf, ,
3 ma h® +..+3%-3a,h’ +3-2a,h" +a,h =hf,,,

n(n—1""ah" +.. .+ (n-1) -3a,h’
+(n—1)-2a,h’ +ah=hf,

+n-1

Representing this on a matrix, the following is

derived:
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1 (n-Dh (n-1°"" (- (n-1rh*
0 h 0 0 0
0 h 2h? 3h° nh®
0 h 2.2h? 22 .3h’ 2" nh®
0 h 3.2h’ 330’ 3" .nh"
0 h (n—=1)-2h* (n-1)*-3h n(n-1¢"h"

aD Yk+n71

& hf,

a; hiy,,

a4 | = hfk+2

a, hf,

a, hfkﬂlfl

This can siumilarly be solved using some numerical
solvers for the independent solutions of o, ..., o,
When, the values of o, «,., ¢, are substituted in the
basis function, the result obtamed 1s called the
continuous formulation of the linear multistep method for
its discrete equivalent.

In a similar manner, we can formulate the classes of
Adams-Moulton schemes in continuous form by using
the series as the basis function. The Adams-Moulton
schemes are LMM that implicit in nature and are often
used as the corrector to the Adams-Bashforth schemes.
As such the derivation of this 1s equally important. Since
the Adams-Moulton methods are implicit, the appropriate
technique is to use the trial or basis function of the form.

n+l

Yx) = Ea](x—xk)i =y(x), X, X =S S

=0

(24)

If we set n = 2, we can obtain a 2-step implicit method
as follows:
Y'(x,) =1,
Y, =1,
Y%= fiss
VX d= Yy

Using the basis function Eq. 24 forn = 2, we get:

Y,

2 3
Y(x,,)=a,+ha +h'a,+h’a, =Y,

Yix)=Y{x)=a =f
Y'(x,,)=a, +2ha,+3h’a, =f_,
Y(x,.,)=a, +4ha, +12h%a, =T,

+2

Solving, we obtam:
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1 1 1
5 = E{ﬁm *Efk Efm}

a. = —
1
a, :E[Zlfkﬂ —3f, _fk+2]
h
ay = Yy _E[ka +8f,,, _fk+2]

Substituting for ¢, o, ¢, and o, in Eq. 24, we obtain:

h
Y(x)=Y,, 75[5fk +8f,,, —f,, |t f(x—x,)

1
+E[4fk+1 S3f, | (x—x,) (25)
1 £, §
e L G
Evaluating at x = x,,, and simplify we obtain:
h (26)
Yieo = Yo F E[Sfmz +8f, — £ ]

Equation 25 1s the continuous formulation of the
discrete formulation which 1s the Adams-Moulton scheme
Eq. 26 of order 3. Several other methods can be obtained
by the same technique.

NUMERICAL EXAMPLE

Consider the system of ODE:

Aa(y_ —0.5y y(0)=14 (27)
dx| z 4-03z-01y [ | z0)=6
The differential equation is known to have an

analytical solution:
—0.5z

y=4de
and
e 2
g% +40_6
3

Using the numerical schemes, we obtain, Y (x)=y (x)
and z (x)=z (x).

The approximate solution of the system of ordinary
differential Eq. 27 is solved using the following schemes
derived above

»  2-step optimal order scheme (PTDZ2)
¢ 2-step Adams-Bashforth Scheme (ABS2)
s 2-step Adams-Moulton scheme (AMM?2)

The numerical results obtamed by each Scheme with
their errors are shown m Table 1-4.
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Table 1: The numerical solution of ¥ (3)

X PTD2 (y) ABS2 (¥) AMM2 (¥) Exact v (X)
0.1 3.804918 3.804918 3804918 3.804918
0.2 3.619354 3.619355 3.619355 3.619355
0.3 3.442822 3.442823 3442831 3.442832
0.4 3.274916 3.274917 3.274923 3.274924
0.5 3115197 3.115198 3115202 3.115203
0.6 2.963268 2.963269 2963272 2963273
0.7 2.818748 2.818750 2.818752 2.818752
0.8 2.681278 2.681279 2.681281 2.681281
0.9 2.550511 2.550511 2.550513 2.550513
1.0 2426121 2426121 2426123 2426123
Table 2: The error of numerical solution of Y(x)
Error of v;
X PTD2 (¥) ABS2 &) AMM? ()
0.1 6.14E-07 5.61E-07 3.71E-08
0.2 3.73E-07 3.37E-07 2.34E-08
0.3 9.40E-06 8.89E-06 9.19E-07
0.4 7.92E-06 6.79E-06 8.87E-07
0.5 5.78E-06 4.86E-06 749E-07
0.6 4.41E-06 3.74E-06 6.04E-07
0.7 4.05E-06 2.71E-06 4.93E-07
0.8 3.24E-06 2.32E-06 4.12E-07
0.9 2.59E-06 2.23E-06 3.73E-07
1.0 2.24E-06 1.92E-06 2.19E-07
Table 3: The numerical solution of z (x)
X PTD2 (2) ABS2 (2) AMM?2 (2) Exact z (X)
0.1 6.061983 6.064964 6.06502 6.065027
0.2 6.126846 6.126829 6.126876 6126883
0.3 6.185693 6.185679 6.185715 6.185722
0.4 6.241674 6.241653 6.241686 6.241692
0.5 6.293974 6.294903 6.291926 6.294932
0.6 6.344732 6.345551 6.345571 6.345576
0.7 6.393009 6.393732 6.393746 6.393749
0.8 6.438913 6.438607 6.439545 6439573
0.9 6.482669 6.482369 6.48314 6483162
1 6.524402 6.524004 6.524607 6.524626
Table 4: The error of numerical solution of z (x)
Error of z
X PTD2 (2) ABS2(2) AMM? (z)
0.1 4.40E-05 6.34E-05 7.34E-06
0.2 3.73E-05 5.37E-05 T.05E-06
0.3 2.91E-05 4.29E-05 6.84E-06
0.4 1.79E-05 3.92E-05 6.24E-06
0.5 9.58E-04 2.88E-05 5.52E-06
0.6 8.44E-04 2.48E-05 4.76E-06
0.7 TA1E-04 1.74E-05 3.32E-06
0.8 6.60E-04 9.66E-04 2.78E-05
0.9 4.93E-04 7.93E-04 2.17E-05
1 2.24E-04 6.22E-04 1.89E-05
CONCLUSION
It has been shown that continuous collocation

methods for solving ordinary differential equations can
equally be derived through the approach in this study. Tt
is not compulsory to use the special function as a basis
function to derive these schemes. A simple power series
used 1n this study is suffice for such derivations. It
should be noted that the optimal order produces a better
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result than the Adams-Bashforth schemes of the same
step, but the Adams Moulton scheme is most accurate.
The schemes generated are stable and consistent.

The results generated in this study could be
compared with the continuous collocation schemes
generated by other researchers cited in this research. All
the derivations agreed with known discrete formulas.
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