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Oscillations in Neutral Impulsive Logistic Differential Equations
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Abstract: In this study, the neutral delay impulsive differential equation model of a single-species dynamical
system 1s considered. Some sufficient conditions for the oscillation of the solutions are also provided.
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INTRODUCTION

Until now, most dynamical models were constructed
mainly with the help of delay differential equations
(¥Xia and Cao, 2007, Xia et al, 2008, Wong, 2000,
Ahmed, 2000, 2001, Akca et al, 2002). Neutral delay
equations also made their way through and their
umportance are by no means insignificant (Peics and
Karsai, 2002; Saker and Manojlovic, 2004). However, there
still oceur situations that suggest the madequacy of our
existing means. In this study, we are considering the
oscillatory implication of a single-species population
dynamical model obtained from a neutral impulsive
differential equation with constant delays. A neutral
unpulsive differential equation with constant delays 1s a
differential Eq. 1.1:

[x()+p(t)x(t-1)] +a(O)x(t-0) =0, t#t,
Al x(t )+ p(ty )x(t, —7) [+ qux(t, —o)=0, t=t,

(1.1)

that 1s, a system consisting of a differential equation
together with an impulsive condition in which the first
order derivative of the unknown function appears in the
equation both with and without delay.

The above definition becomes more meanmgful if, we
define other related terms and concepts that will continue
to be useful as we progress.

Let QcR" be an open set and let D = R +x Q, where,
x defines a Cartesian product. Let us assume that for each
k=1,..,7,€ C(Q(0, =), T, (X)< Ty, (x) and fimz, (x)=< for
x € Q. For convenience of notation, we shall assume that
Ty (x) = 0. Except stated otherwise, we will assume that the
elements of the sequence S: = {t},.; are moments of
impulse effect, where, E represents a subscript set, which
can be the set of natural numbers N or the set of integers
7 and satisfy the properties:

C 1.1: If the sequence {t,} 1s defined for all k € N, then

O<t,<t,<... and lim t, = 4o
k—steo

C 1.2: Tf the sequence {t,} is defined for all k € 7, then

to<0<ty, t=<t,., for allke Z, k=0 and lim t, =+

k—te

Consider the initial value problem of the impulsive
differential system

' =f(t,x), t# 7, (%),
(1.2)

where,
f = D-R"
L. = OQ-R"

Definition 1.1: A function x: (t;, t; +a)~ R t,20,a> 0, is
said to be the solution of system (1.2) if

o x(t)=x,and (t, x (e D forall t € [t,, t, +a)

»  x () 18 continuously differentiable and satisfies
X' (=1t x () forallteft, t, +a)and t#1, (x (1))

o Iftetptyta)andt=1 (x () thenx (t)=x () + 1,
(x (t)) and for such t's, we always assume that x (t) 1s
left continuous and s#7; (x (s8)) for any j, t<s=<d, for
some 00

Definition 1.2: A solution x 1s said to be

+  Finally positive, if there exists T=0 such that x (t) is
defined for t=T and x (t)=0 for all t=T

»  Finally negative, if there exists T>0 such that x (t) 1s
defined for t=T and x (t)<0 for all t=T
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¢ Non-oscillatory, if it is either finally positive or finally
negative

*  Oscillatory, if it is neither finally positive nor finally
negative (Lakshmikantham et al., 1989)

Usually, the solution x (t) for te j, t¢S of the impulsive
differential equation or its first derivative x' (t) 1s a piece-
wise continuous function with points of discontinuity t,,
t,€j18, where, T = R is a given interval. Therefore, in order
to simplify the statements of the assertions, we mtroduce
the set of functions PC and PC', which are defined as
follows:

Letre N, D: =[T, «) = R and let the set S be fixed. We
denote by PC (D, R) the set of all functions ¢: D-R, wlich
15 continuous for all teD, t&3. They are continuous from
the left and have discontinuity of the first kind at the
points for which teS.

By PC (D, R), we denote the set of functions ¢: D-R,
having derivative & /d/e PC (D, R), O<j<r (Bainov and
Simeonov, 1998; Lakshmikantham et al., 1989).

To specify the points of discontinuity of functions
belonging to PC or PC', we shall sometimes use the
symbols PC (D, R; Syand PC" (D, R; S), reN.

STATEMENT OF THE PROBLEM
Before, we formulate our results, we state some
lemmas and theorems that will assist us in carrying out the
investigation.
Lemma 2.1: Let f, g: [t;, =] » R be such that
ft) = g (t) + pg (t-1), t=1, + max {0, T} 2n
where, p, T € Rand p#1. Assume further that

limf(t)=L¢ R

[

exists. Then the following statements hold:

¢+ Iflmmnfg(ti=acR thenL=(1+pa

¢+ Iflmsupg(ti=beR, thenL=(1+plhb

¢ Ifg(t)is bounded and p#1, thenlim g (t)= L/1 +p
Lemma2.2: LetF, G, P: [T, =) » R and ¢ € R be such that

F(t) =G{t)+P()G(t—c), t 2 t, + max {0, ¢} (2.2)

Assume that there exist numbers P, P,, P,, P, € R
such that P(t) is in one of the following ranges:

Suppose that G (t)»0 for t=t,, liminfG(t)=0 and that
limF(t)=LeR exists. Then, L. = O (Gyori and Ladas, 1991).

Consider the linear impulsive differential equation
with delay

x'{t)+p(t)x(t-1)=0, t£ S (2.3)
Ax(t, )+ px{t, —T)=0, Vt, €S
together with the corresponding inequalities
X (t)+p(t)x(t-1)<0, te s 2.4)
Ax{t )+ px(t, —T)<0, ¥t, €8
and
(2.5)

X(t)+p(t)x(t-1)20, t£ S
Ax(t )+ px(t, —T) =20, ¥t, €8

Let the following condition be fulfilled:
C21:pe PC(R,, R)yand 120.
Theorem 2.1: Assume that condition C 2.1 is satisfied and
let there exist a sequence of disjoint intervals I, = [{, 1,)

with 1, - {, = 21, such that:

s  ForeachneN, te] and t,e I,

p ()20, p,20 (26)
s There exits v,eN such that for n>v,
T
_[ pls)ds+ E P21 (2.7

My =T T~ TSl <7
Then:
¢ The inequality Eq. 2.4 has no finally positive solution
» The nequality Eq. 2.5 has no finally negative
solution
¢ Each regular solution of Eq. 2.3 is oscillatory

Next, consider the linear impulsive differential
equation with advanced argument

X (t)-p(t)x(t+1)=0, t& S
Ax(t, ) —px{t, +1)=0, t, €8

(2.8)

together with the corresponding mnequalities
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{X:(t)p(t)x(tm)zo, tZ S (2.9)

Ax{t ) —px(t, +T)20, t, €8

and

{X’(t)—p(t)x(t+f)<0: tZ S (2.10)

Ax{t, ) —px(t, +T)<0, t, €8

The following result is valid:
Theorem 2.2: Let condition C 2.1 be fulfilled and let
there exist a sequence of disjoint intervals I, = [Z,, 1,) with

MNw=C. = 21, such that:

¢+ ForeachneN, tel and tel

pt)=0, p=0 (211)
¢ There exits v,€N such that for n=v,
[
I p(s)ds + 2 p, =1 (212)

N oty Sl +T
Then:
¢ The inequality Eq. 2.9 has no finally positive solution
* The inequality Eq. 2.10 has no fmally negative
solution

¢ Each regular solution of Eq. 2.8 is oscillatory
RESULTS

Let us modify the classical delay logistic equation

1

by introducing additional term r, (t) to accommodate our
present needs. Consequently, we obtain a modified delay
logistic equation in the form

N

_ _Nit-9
"W T }

K

r(t) =1, (O+r 1) 3.1

where:

_.|, Nit-o)
r(t)= r{l e }

15 the growth rate associated with density dependence
and

=N

is the growth rate associated with the growth rate at time
t-T.

10

The expansion of Eq. 3.1 leads to a neutral delay
differential Eq. 3.2:

N(t) = N(t)Hl N ")} N T)}, {20 (3.2)
K K

where, 1, K € (0, o), T, 0 € [0, ») and ¢ may assume any
value in the interval (e, o). Here, the different parameters
in the equation represent different physical quantities.
Precisely, N (t) represents the population density at time
t, r, (t) denotes the feedback mechanism, which takes o
units to respond to changes in the size of the population
and the constant K is the carrying capacity of the
environment (Gyori and Laddas, 1991).
We mtroduce the change of variable

O]
x(t)=In <

and hence, transform Eq. 3.2 to the form
/
[x(t) - c(eX(H) - I)J +r(eX(H’) - 1) =0, t=0 (3.3)
Suppose x (130 for all t>t-max {t, 0} and set

x(t—a)

e -1
» QD) —rﬂ

x(t-1) -1
P(t)= co— vezg, 3.4
x(t-1)
assuming that t,>0 exist, we obtain a linear neutral delay
differential Eq. 3.5:

[x(t)+P(tx(t -0 +Q(tx(t-0) =0, t=>t, (33)

Let us assume that Eq. 3.2 models a single-species
population system and that the population is experiencing
a periodic increase perhaps, due to heavy immigration.
Suppose further that the moments t,, t,.., t, 1<k<ee,
where, ;< £,<..< f, and lm f, = 4o represent rapid
changes in the population density, we can build a neutral
delay impulsive differential Eq. 3.6:

[x(t)+ P(Dx(t —T)] + QIx(t—0) =0, t,_ €S, t2t
Alx(t, )+ Pt x(t, -]+ Qux(t, —6)=0, vt €8

" (3.6)

where, C3.1, P (t)e PC' (R, R), Q () e PC(R., R.), 0,20,
Tz0and 020,

Literarily speaking, since the impulsive condition is
based on heavy immigration, the population density is
expected to go up that 15, Ax > 0 (Ax (,)=0).
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If, with Eq. 3.6, we associate the condition

3.7)

x(t)

o(t), ~y=t=<0, vy =max|t, o}
where, the function ¢ satisfies the following condition:

o€ PC[[—7,0].R, |, o(t)»0for—y<t<Oand
o(t) is absolutely continuous with locally bounded

derivative on-t <t <0

then the initial value problem Eq. 3.6 and 3.7 has a umque
solution, which exists and remains positive on [0, )
(Gyori and Laddas, 1991).

The task of establishing the oscillatory status of the
solution to the original differential Eq. 3.2 about the
steady state K appears to be extremely involving
especially, m view of its impulsive requirement. However,
this 13 hardly a problem if we are conscious of the fact that
every positive solution of Eq. 3.2 along with its impulsive
conditions oscillates if and only if every solution of
Eq. 3.6 oscillates. Against this backdrop, we will shuft our
emphasis to Eq. 3.6 believing that whatever conclusions
we arrive at, will remain binding to Eq. 3.2 about K. Thus 1s
accomplished through the following lemmas and
theorems.

We return to the neutral delay impulsive differential
Eq. 3.6 together with the conditions for its coefficients
and delays.

Lemma 3.1: Assume that C 3.2

j x(s)ds == = T Q(s)x(s — 0)ds = o

tg >0 tg>0

for any x € PC (R,, R,) and Yo =0. Let x (t) be a finally
positive solution of Eq. 3.6 and set:

z{t)=x{t)+ P{t)x(t-1) (3.8)

Then the following statements are true:

*  z(t)1s a finally non-increasing fimction
¢  IfP(t)<l, then z (t) is finally negative
+  If-1<P(1)<0, then z ()>0 and lim z (1) =0

Definition 3.1: The solution x (t) is said to be

*  Finally non-increasing if t,<t, implies x (t,)2x (t,) for
t,, t,>T and T>0

¢ Finally non-decreasing if t,<t, implies x (t,)<x (t,) for
t,. =T and T>0

11

Proof: We have

Z{t)=-Q(t)x(t-o)<0,teS
Az(t,)=-Qx(t, —0)<0,Vt, €8

(3.9)

and so, z (t) is a finally non-increasing function.
Assume, on the contrary that z (t)>0, ¥t=T,. But
then,
="z < 0" = Zt)=0

If however, z (t) = 0, then by condition C3.2, Eq. 3.9
and the fact that x ()0, ¥t>T,=2z(t)<0 ¥t>T, Hence,

(1)< 0" < Z(1) >0, Yt 2T,
Let us start with the statement

x{t)2-P(t)x{t-T)2x{t-T) (310

We show that x (t)> p>0 for ([t,-t,, t,). Also, we show
that the statement holds for (t,, t.,). Since, x (t)=0 for all
continuity points (t, t,,), only lim x(t)=0 can contradict
our statement. Actually, if lm x(t}=0_then by Hq. 3.10,
Jim =(t-t)=0 also. Then, [lmzt)=0 follows and from
Eq. 3.9, z fulfils the initial condition in (t, t,,,) that is:

Z(t)=-Q(t)x(t-o)
z(t,)=0

hence,
0=2z(t,)=z(s), se(t,, t,]

which contradicts the hypothesis that z (t3>0, t;<t<ee.
Therefore,

Iim x{t)>0
t—3ty +0
Consequently,
min x(t)>f, >0
bty
Hence,
min x(t) min mn x(t)= min =pB>0
b, —rtst, ( )tk Zrgty <ty 1, <rSt,, (1) by, Tt <, B =P

Thus, x (t) is bounded from below by a positive
constant on the sequence t+kt, O<k<ee. Therefore, from
Eq. 3.9, we see that

£(1)=- Q()x(t- o)< QU,
Az(t,)=-Qx(t, —6)<-Q,B

which, in view of condition C3.2, implies that
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Hm ()=

—B[TQ(t)ngQkJ—ﬂo

This is a contradiction and so completes the proof of
Lemma 3.1 (b). Notice, in the Eq. 3.11 that the condition

TQ(t)dt+k2;Qk =0

to

constitutes a special case of condition C3.2.
Let us claim inversely that z (t)<<0. We recall that

') > 0" & Z(t) <0

Hence, reasoning like in b (1) above, z (t)<0 for t=T,.
Thus, x (t)<x (t-1), hence, x (1) is a bounded function and
soalso is z (). Since z (1)<0,

lim z(t)=1L <0
t—stee
Hence,

z(s)ds

= —Cc0
to

On the other hand,
r (s)+ P(s)
‘[( ‘[{X(S —T) &

_Hn[ix s)ds + jp(sﬂ)x(s)dsJ

s)+ P(s)x(s —7)}ds = lim

Tpes

[ J: X ds + I P(s+ Tx(s)ds +
fo (3.12)

+ ]. x(s)ds + I P(s-#—r)x(s)ds}
J

+lim [ x(s)ds+ j P(s + Tx(s)ds

T-t tg—T

x(s)(1+P(s+1))ds+

But the component

_[ x(s)(1+ P(s+r))ds+hm _[

to

ds>0

_r P(s + Tix(s)ds <0

th—tT

12

meaning that Eq. 3.12 cannot tend to - This i3 a

contradiction, therefore, z(t)#L<0  which implies that

z(t){ 0
Hence, we have established that z ()0, t=T, and that
z (t)>L>0. Clearly, if L>0, then

Iz(s)ds:oo

ty

Tx(s)ds:

Thus, by condition C3.2, z (t)~0 and this completes
the proof of Lemma 3.1.
Now consider the neutral Eq. 3.13:

s
A[X

where t;eR. We mtroduce the following condition:

hence,

+px(t - r)] +Q(t)x(t—0)=0,te s
)+ px(t—1) [+ Qux(t, —0) =0, vt, €8

(3.13)

Condition 3.3: There exist nommegative mtegers my, and m,
such that

t,. =t +|g, t

T

=t +

k+my * Vk+my

Lemma 3.2: Let us assume that conditions C3.2 and C3.3
hold. We further assume that p#+1 in Eq. 3.13 and that

QePC(R,,R,),Q, 20120620 (G314

Let x (t) be a finally positive solution of Eq. 3.13 and
set z (t) =z (t) + px (t - T). Then

¢ z(t)is a finally non-increasing function and either

lim z(t) =— o= (3.15)
t—tee
or
lim z(t) = 07 (3.16)
[

The following statements are equivalent:

s  Equation 3.15 holds
+ ps<l
¢ lm Ot

The following statements are equivalent:
s  Equation 3.16 holds

+ p:=l
+ I x=0
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Proof: From Eq. 3.13, bearing inequalities Eq. 3.14 inmind,
we obtain

Az(t )=

=-Q(tx(t—o),t¢ 8
- Qux(t, —0), ¥t 8

3.17)

which implies z 1s a non-increasing function. It converges
therefore, either to —«< or to a number L, where -co=<],<teo,
for t—ee.

If z converges to o=, then the proof of (a) is complete.
Otherwise, if z (t) converges to L as t ~ oo, then

[z(t)dt=x=

ty

(depending on whether L = 0 or L<0).

Agamn, if L 0, the proof of (a) 13 complete.
Otherwise, we integrate both sides of Eq. 3.17 from tto -
for sufficiently large t, to obtain

14

(3.18)

7—IQ(t)xt— yat— ¥ Q.x(t, o)

By =ty

Equation (3.18) is clearly, finite and this implies

_[ x(s)ds <o
tg
by condition 3.2.
Notice the modification

s)ds+ Y x(t,)=

ety

:TQ(S)X(S—G)dS+ Y} Qx(t,—0)=<, Y020

iy by 2ty

of condition 3.2 or equivalently,

IQ(S)X (s —o)ds+ ZQk t, —C) <o

tp 2ty

oo

= Ix(s)ds+ Y ox(t, ) <oe

to t 2tg

where in this case, 00 is assumed to exist. Statement 3.18
contradicts the hypothesis that

Tz(t)dt:w

tg

13

Hence, 1. = 0 and this completes the proof of (a).
Let (1) hold that 1s, condition (3.15) 1s fulfilled. We are
to prove that

(1) = (1)
=x(t) +px(t-1)

By definition,

Z(t)

Both x (t) and x (t - T) are positive functions, meaning
that the above expression can be negative only if p<0.
Consequently, z (t)~-e only if x (t) 15 unbounded.

We show that there exists T, €R such that
z(T,)<0 and

X(TD*) > supx(t)

=T,

Let us assume conversely that such T; does not
exist. Then,

X(TD*) <supx(t) VI, e R

=Ty

Consequently, 3 e>0 such that ¥s, T, <s<T;+e,
x (8) <sup x (t). Hence,
(=

sup {s 1x(s) < supx(t)} =TeR

1T,

must exist, otherwise x (s) 1s bounded contrary to our
earlier assertion. But then for T,

supx(t) <x(T)

=Ty

holds. With thus T;: = T, we obtain the mequality

-1 )2x(T)(1+p)

0> z(T{) :X(Tn+) + pX(TD

This is only possible if p<1, since x (T;")> 0.
(11) = (111)

Let p<0. Also, let us assume that z 1s finally positive.
Then z is decreasing and z - 0, by Lemma 3.1. If

0<z(t)=x(t)+px(t—T)
then
x(t)>(—p)x(t—r) (3.19)

On the other hand, by z (t)- 0 and

Z(t)=

Az(t,)

~Q(tx(t-o). tes
Qx(t, —0), vt es
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0—z(t) :7_|‘Q(s)x(s7c3)dsfz:Qkx(tk —0) > o

t bty

Hence, by condition 3.2,

[x(s)ds <=, ¥ x(t, —0) <=0 (3.20)
t-o bty
Consequently,  inequality Egq. 3.19  brings

contradiction smce
x(t, +i6) > (—p) x(t, —G), 1<i<ee

would have led to infinity in Eq. 3.20. Hence, z cammot be
finally positive. Thus, by Lemma 3.1, z--co if t-ece.
Therefore, there exists T, such that z (s)<0 1f s=T,.
Since,
z(t) =x(t) + px{t —1)
and z (t)--co,
0>z{t)>px(t-1)

which implies

<x{t—T) = tee
(i) = (1)

Assume that x (t)--o for t —ce. We show that if z (t)-0,
it implies that x(t) »e  Really,

Z(t)=-Qtx(t-o),t¢ 8
Az(t,)=-Qux(t, —o). Vt, 8
Hence,

0-7{t) = [ QEeIx(s ~0)ds - F,Qx(t, ~0) <

t=t,

which, by condition 3.2, mmplies

Zx(tk ~Gj<eo

IX(S —0)ds <= and
t Tty

This contradicts the statement that x (t)--. Hence,
z (t)»0= =(t)-»= Therefcre, x (t)=e = z(t)-¢, by Lemma
3.1. This completes the proof of (b).

Applymg contraposition to the statements of Lemma
3.2 (a), we obtain— (1) = — (i) = - (jji)
Thus,

= () =~ (ji) means 7(t) > = p>-1
- (J) = (JJJ) means Z(t)—) 0= X(t)w’-) =

() =G

14

We know thatz (t)» 0=p=-1. Let us assume that
p =-1.If z, being a decreasing function, takes on negative
values, then z (t) finally tends to -.c by Lemma 3.1. Hence,
z (t)~0 unplies that z1s finally positive. Thus,

0<z(t)=x(t)-x(t-1), Vt>T,
Hence,
X(t-1)<x{t), Vt>T,

Iterating the above inequality, we obtain

x{t+it) > x(t—-7)>0 (3.21)

On the other hand,

Z(t)=-Qtx(t—0o)
Az(t,)=-Qx(t, —0)

where, t, belongs to the set of points of impulse effect.
Hence,

0-2(1) =~ [Qs(s ~o)ds - T Qx(t, ~o) <=

(=N
This follows, from condition 3.2 that

Y x(t, —6) <o

=ty

which contradicts condition 3.21. Hence, the assumption
that z (t)-0 when p = -1 leads to a contradiction.
Therefore, p=1 is admissible only.

() = Gij)

Now, we are familiar with the fact whenp=1, x(t)-#=
Let us check what happens when p>0. Smnce, whenever
x(t)#e implies z{t)-»— it follows, by Lemma 3.1 that z
(t)-0. Therefore,

z{t)=x(t) +px{t-1) >x(t) >0, Yt>T,

Hence, x (1)-0.
Let, -1<p=<0. Then

x(ty=(-p)x(t-T)+z(t)<(-p)x(t—1)+z(T, - 1)
where, we have used the fact that z is a strictly decreasing

function and te(t,, t;+1). We rewrite the above inequality
1n the form:
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x(t)<(-p)x(t—1)+2z(T, 1)
and replace the function x (t - 1) with its supremum

x(t-1)< sup  x(s)
se[Tp-1. To ]
Then,
sup x(s)+z(T, - 1)

x{t)<(-p)
se[Tp-t Tp]
hence,
sup x(s)+z{T, —1)

se[Tp—1, Ty |

sup x(s)<(-p)

se[ Ty, Tg+1]

Let.

O, =t +kt, M, = sup x(5)V-1Zk<e

s€[8, -1, 6]

Then, we get
M, <(-p)M, +z(0, -T)

Applying this iteratively, we obtain, for ¢ =k

M, <(=p) "M +2(6,_) D (-1)
i=k

- 1
<CPTM, 20—

Hence, for 8- -<0,

lim sup M, < z(ek,l)%

therefore,
M, »0=x{t) >0

This means (jj) = (jjj) and thus, completes the proof
of Lemma 3 .2.

Theorem 3.1: Assume that conditions C3.1, C3.2 and
(3.14) are satisfied. Then every solution of the Eq. 3.22

[x(t)-x(t-7)] +Q(t)x(t-c) =0, t£§
Alx(t,) - x(t, 1) ]+ Qx(t, —0) =0, vt, € 8

(3.22)

is oscillatory.
Proof: By the defimtion of z (t), the expression
z(t)=x(t)-x(t-1)

immediately implies p = -1. Hence, by the implication (j) =
(37) of Lemma 3.2 (c¢), x (t) 1s neither finally positive nor
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finally negative. Consequently, the solution of Eq. 3.22
oscillates. This completes the proof of Theorem 3.1.

Theorem 3.2: Assume that conditions C3.1 and C3.2 hold,
-1< P (t)<0 and every solution of the equation

Z(t)+Q(t)z(t —o) =0, t=t, tes
Az(t, )+ Quz(t, —o)=0,Vt, e 8

is oscillatory. Then every solution of Eq. 3.6 is oscillatory.

Proof: Assume conversely that Eq. 3.6 has a finally
positive solution x (t). We set

z{t)=x(t)+ P(t)x(t-1)
Then by Lemma 3.1 (c¢),

z{t)>0, t2t, (3.23)

Since, z (t)<x (t) (t=ty), it follows from equation

Z(t)=-Q(t)x(t—0),tes
Az(t,)=-Qx(t, —o),vt, €8
that

{z’(t)+Q(t)z(t—G)<0, t>t, (3.24)

Az(t )+ Q.z(t, —o)

1A
<

In view of condition 3.2 and Theorem 2.1 (i), the delay
impulsive differential inequality Eq. 3.24 cammot have a
finally positive solution and this contradicts condition
3.23. Thus, the proof of Theorem 3.2 is complete.

CONCLUSION

The beauty and effectiveness of the above results are
indications that it is now possible to inject adequate
mathematical components mto those frequently
encountered natural disasters such as earthquakes,
tsunamis, etc. In addition, the effect of periodical increase
(decrease) in a given population can also be given a more
accurate mathematical treatment.
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