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On the Equivalence of Two Quasi-Newton Schemes in Generalized Linear Models
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Abstract: The Tterative Weighted Least Squares and the Fisher’s Scoring methods are two most commonly used
iterative maximum likelihood optimization methods in generalized linear models. The Fisher’s Scoring method
1s given 1n terms of the gradient vector. While, the Iterative Weighted Least Squares method 1s based on the
adjusted dependent vector. Using the relation between the expected Hessian matrix and weighted sum of
squares, established for quasi-likelihood function and the link between the expected Hessian and the weighted
sum of cross product, a proof of the theorem on the equivalence of the two quasi-Newton schemes 1s presented.
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INTRODUCTION

The maximum likelihood estimator 1s an alternative to
the minimum variance unbiased estimator (Scott and
Nowak, 2006). In generalized linear models parameter
estimation 18 accomplished by iterative maximum
likelihood procedure. Generalized linear models extend the
idea of non linear regression to models with non-normal
error distribution (Smyth, 2002). This is done (Allen, 1987)
by replacing the objective function, f,, with the log
likelihood function 1 (8, y).

Stokes et al. (1975), McCullagh and Nelder (1992)
used the logit defined as the logarithm of the ratio
between the probability of success and the probability of
failure to demonstrate the concept of link function in
generalized linear models. Based on this, the weight
function of the Iterative weighted least squares method is
defined.

Definitions: Tet 5 be estimate of parameter vector P at
iteration k, then the Fisher’s Scoring method is given as
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where,

H = The Hessian matrix and g 1s the gradient vector
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The iterative weighted least

is a maximum likelihood

squares method
estimation method for
generalized linear models. The solution 1s given as
follows:
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where,

Z = Adjusted dependent vector

Z
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is the systematic component of the model. X is the design
matrix. Wedderburn (1974) stated the theorem on the
equivalence of the Fisher’s Scormg method and the
Tterative Weighted TLeast Squares method and showed

that
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where,
k= Quasi-likelihood function having properties

similar to those of the log likelihood function

McCullagh and Nelder (1992) using the log likelihood
function, | and an adjusted component B, established that

(AR") =ZWx,z =X'WZ=-E(H)
Where:
97

AP =AB+g H= e

These facts are used to present a formal proof of the
theorem. Wedderbumm (1974) established in his theorem
(1) and proof.
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MATERIALS AND METHODS GOy -mu d E y1 m},t1 o
_ _ _ o, ul(lfu)’ —1) 9B,
Tl.'leorem 1: Let v (1= 1,...,11). be mdependent observations Y1 m, a!«h
with expectations , and variances V (u,). Let K (v, 1) be 2 “u)am, X
the quasi-likelihood function of the observation y, and .
suppose that p is expressed as a function of parameters since
Bi- ... then O, _ dw om, _ du, X
OB, dn 9B dn "
E{ Ak J E{ #k ) 1 3w ou so that . "
Saor | T oR oRr Y —mM
IB.IB; IR Vi) oB, 9p e T v X
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Proof : Note that The fisher information for P is given (Silvey, 1970) as
, -E (5°1/3p.9P.):
| 2k | g [a_kJ W o),
ap,9p, du | of 9P, IR.P.
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since, V (1) = var (v). W l-w)dn “dn,
Also, we have Y, (dy, /dn, ) %%, ={X'WX]
(1)
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=—E|(z-u) o H ol
o8, | Vw98, | V(u) o o8
1 au au Therefore, -E (H) =X"WX. = Fisher’s informatiorn.
:W)ﬁg The iterative Weighted Least Squares method is
K) ob. 9B, derivable form the Fisher’s scoring method as shown by
the theorem and proof.
which completes the proof.
Theorem 2 (the main theorem): The iterative weighted
1 a—“a%M:Wx-x- WY least squares and the Fisher’s Scoring methods are
V(W) 9B, 0B, o equivalent optimization schemes in generalized linear

models.

The quasi-likelihood function and the log likelihood
function have similar properties. For this reason, we
consider the expectation of the Hessian matrix defined on

Proof: Let the adjusted dependent variate

the log likelihood function z=n+(y- )d_ﬂ
n+iy-u
The loglikelihood function and fisher’s information . du
The loglikelihood for a binary response variable can be where,
written as: n = Systematic component of the model
wy) = Z{yl 10;{1 a }r m; log(1-p, )} Let the gradient vector, g = /3P and A = -E (&*1/ap.P.)
H Let
which becomes BB = Y - pY
V=YY yxp - m, 10g(1+ exp EXqu) The replacement of 3*1/2B,5p, with (3°10p,3p,) in the
i Newton-Raphson method yields the Fisher's Scoring
From method.
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From the Newton-Raphson update

dp=A"g, as BB:B“‘“)_B(k) and B(k+1)
Alg = Bkﬂ B(k)ZSB

:B(k) +A_lg,
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Hence,
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For a single observation with constant dispersion,
«(P) disappears,

g=W(y *M)%X]

Taking all the observations together,

g=y Wy -

—x. = Af
dp.x 8

¥, = X; (summation over all n individual observations). The
components of g are

dn dg
“YwWiy-uitx A =-F%
g =Y W(yu) duxr - n
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E = ZWXrXS

The new estimate p*" = p% + 8p =p¥+ A1 g, AP="
= AR¥+ ABP = AP“+ g, The component, B, of P is given
as:

(AB)I— = %’ArsBs = Z"V\I1Xrﬁrl1

and the adjusted component based on z 13 given as

(AB‘)r =Y Wxz=y Wx {n + (y—u)j:}—x'wz

but

AR =AP+ g XWZ=AR+g AB=XWZ-g
B=AT(XWZ-g)=A"(XWZ]-ATg=A"(X'WZ)-3p
B+3B=A" (XWZ)

Hence,

B(k+1) = A (XIWZ) — (XIWX)_I XIW7,

which is the Tterative Weighted TLeast Squares update.
Thus we have shown that the Fisher’s scoring algorithm
is the same as the iterative Weighted Teast Squares
algorithm.

RESULTS AND DISCUSSION

The exploration of alternative estimation schemes in
generalized linear models arises from the complexities
associated with the computation of the Hessian matrix in
the Newton-Raphson method. Each member of the
Hessian matrix involves a weight matrix, both partial and
ordinary differential operators and the systematic
component of the model. The quasi-Newton methods
avold the direct use of the Hessian matrix by considering
its expected value. The prove that both methods are
equivalent rests on the fact that the expected value of the
Hessian matrix, E (H) = - (X'WX) and that the gradient
vector g 1s a product of the Hessian matrix and the
discrepancy between cumrent and previous quasi-
Newton’s updates. The loglikelihood function for a binary
response variable has been used to first establish that the
expected Hessian matrix used in Fisher’s Scoring method
is actually the Fisher’s information matrix, X'WX used in
the Iterative Weighted Least Squares method. The
gradient vector or score function 1s a weighted differential
operator of the systematic component of the model

Computational ease remains the guiding factor in the
choice of either of the method.

CONCLUSION

Parameter estimates of generalized linear models
can be obtained using the Fisher’s Scoring method or
the Iterative Weighted Least Squares method. The
Fisher’s Scoring method uses the gradient vector
while the Tterative Weighted Least Squares method
uses the adjusted dependent variate. These differences
not  withstanding, bo th method yield the same
solutions. The ease of computation of the gradient
vector g and the adjusted dependent variate become
the deciding factor as to which method to adopt in any
given situation
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