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Oscillations in Systems of Neutral Impulsive Differential Equations
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Abstract: In this study, we establish new oscillation criteria for system of neutral impulsive differential
equations with constant delays. Expressed as theorems, the criteria give explicit sufficient conditions for the
oscillations of every solution of the said system and are readily generalized for non-autonomous cases.
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INTRODUCTION

In the last decades, there has been an increasing
interest in obtaining sufficient conditions for the
oscillation and/or non-oscillation of solutions for neutral
delay differential equations with or without impulses
(Grammatikopoulos et al, 1986, Grove et al, 1988;
Ladas and Schults, 1989; Bainov and Simeonov, 1998,
Dzurina and Mihalikova, 2000). Most of these studies,
particularly those pertaimng te neutral impulsive
equations, limit their discussions to one-dimensional
linear and nonlinear neutral impulsive differential
equations with single variable and/or with constant
delays (El-Morshedy and Gopalsamy, 2000, Xu and Xia,
2008; Luo et al., 2000, Graef et al., 2002, 2004). In this
study, we extend the concept of the oscillations in
systems of neutral delay equations to systems of neutral
impulsive differential equations with constant coefficients
and delays.

We begin by considering the following initial value
problem for systems of differential equations with
mmpulses:

x"=f(tx), t#s,

(1)
Ax(t) s, =x(s, +0)-x(s,) = I (X(Sk ))
k=1, 2, ..., with initial condition
x{0)=x, 2

Where:
f: S—R", s={(tx);t20,xe D}

D 1s a domam in R"; here and further on by, s, k=1, 2, ...

E

0<s <s, <. (3)

we denote the moments when the integral curve (t, x(t)) of
problem Eq. (1) and (2) meets some of the hyper-surfaces

8, t=t,(x),k=1,2,-- 4

jk is the number of the hypersurface met by the integral
curve in the moment s, (in general, j, # k); I D — R%
x(s) =x(s,-0),k=1,2, ...%x,€D.

Definition 1: The function x = @(t) 13 a solution of Eq. (1)
inthe interval I: = («, ) if

+  @(t) s differentiable in ], t # s, k € N and satisfies the
condition

@'(t)=£(t, @(t)) for all
te],t#s, and ke N

»  @(t) satisfies the relation

@(s, +0)-9(s, -0) =T, ((s, -0)),
s;eland ke Z

Definition 2: A solution x 1s said to be

»  Finally positive, if there exists T>0 such that x(t) 1s
defined for t>T and x(t)0 for all t=T
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+  Finally negative, if there exists T>0 such that x(t) is
defined for t=T and x(t)<0 for all t=T

¢ Non-oscillatory, if it is either finally positive or finally
negative

¢ Oscillatory, if it is neither finally positive nor finally
negative (Lakshmikantham ef al., 1989).

Definition 3: A solution x(t) = [x,(t), x,(t), ..., x, ()] of a
system of impulsive differential equations is said to
oscillate if 1t 1s finally trivial ¥t>T or if at least one
component does not have finally constant signum and
non-oscillatory.

Definition 4: A solution x(t) = [x,(t), x,(t), ..., x,(t)]"of a
system of impulsive differential equations is said to
oscillate if every component x(t), l<i<m, of the solution 1s
neither finally positive nor finally negative and is non-
oscillatory if at least one component 1s finally positive or
finally negative.

Usually, the solution x(t) for te], t&S of a given
impulsive differential equation or its first derivative x°(t) is
a plece-wise continuous function with pomts of
discontinuity t,, t,=INS. Therefore, in order to simplify the
statements of the assertions, we mntroduce the set of
functions PC and PC*, which are defined as follows:

Let, reN and the sequence 3: = [t,],.; be fixed, where,
E represents a subscript set which, can be the set of
natural mumbers N or the set of mtegers 7 and satisfies
the properties:

Condition 1: If [t,],; is defined with E = N, then

and lim t, = +ee
k—stee

O<t, <t, <

Condition 2: If [t,],; is defined with E = 7, then

t,<0<t, t, <t forkeZ k=0

lim t, =+oo
k—ste

Definition 5: PC (D, R) is the set of those functions,
which are continucus for all teD, teS, YkeN and have
discontinuity of the first kind for t£S and keN.

Definition 6: PC(D, R) is the set of those functions, which
are r-times continuously differentiable for all teD, t&S,
keN and have discontinuity of the first kind for teS and
keN (Bamov and Simeonov, 1998; Lakshmikantham ef ai.,
1989).

To specify the pomts of discontinuity of functions
belonging to PC or PCY, we shall sometimes use the
symbols PC (D, R; Syand PC', (D, R; 3), reN.

Now consider the impulsive delay differential Eq. (5)

+iq1(t)y(t—r (t))=0, tes
(3)
quky(t - ) 0,t,e8
and the impulsive delay inequalities
+ip1(t)x(tf (t))=0, tg 8
®)
+ ¥ pex(t, — T (1)) <0, 1, €8
i=1
and
Z(t)+ Y (t)z(t-x (1)) 20, te S
)

2 z(t, -7 (

)>0 t,es

We mtroduce the condition:

Condition 3:

p.q.5€PC{R, R}, T eC(R R.),i=1--n
andp,. Q. T, 20, keN,i=1-

Let, t,€ R, and define

t 7mm{g1tf{t— (t)}} (8)

1=i<n

We associate with the Eq. (5) and the inequalities
Eq. (6 and 7) the initial condition

x()=o(t). t, St<t

where, @(t)e PC([t, t,], R), @(t,)>0. The following theorem
(Bainov and Simeonov, 1998) will be useful in carrying out
the proofs in the main theorems.

Theorem 1: Let, condition 3 be fulfilled and let

p.{t)zq tj=25(t); VteR,.i=12-.n ©)
PuZqe 25, keN, i=12,-

Assume that y(t), x(t) and z(t) are solutions of Eq. (5)
and mequalities Eq. (6 and 7), respectively and belong to
the space PC([t;, + «] R) and such that
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x(t)>0, t=t, (10)
z(tn*)zy(t;)zx(tg) (11)
Xt)>y(t)> Z(t) >0.t.<t<t (12
x(ty) - y(ty) - z(t,) Y
Then,
z(t) 2 y(t)=x(t), Vt=t, (13)

Consider now the impulsive differential inequality
Eq. (6) together with the impulsive differential Eq. (14)

x’(t)+Zpl(t)x(t—rl(t)):o, te's

Ax(t )+ Zplkx(tk -7 (t, )) =0,t, €8
i=1

(14)

By virtue of Theorem 1, we obtain the following
useful corollary.

Corollary 1: Let condition 3 be fulfilled. Then the
following statements are equivalent:

¢ The inequality Eq. (6) has a finally positive solution
¢ The Eq. (14) has a finally positive solution

RESULTS

In this study, we obtain sufficient conditions for the
oscillation of every solution of the system of neutral
impulsive equations

N

[x(t)-Px(t-7) [ + X Qx(t-0, )= 0. te s
= (15)

il

A[X(tk)- Px(t, -’c)}r EQ‘X(tk -G6,)=0,t, €8

+=1

where, P is an m x m diagonal matrix with the diagonal
entries p,, ps, ..
l£¢<N such that

» P and Q, 13 an mxm matrix for each

0<p £l forl<i<m, T, 0,€|0, =)

(16)
and Qe R for1< ¢ <Nand1<i, j<m

Q18 also an m x m matrix and has the entries qn@”) cR
for 1< <N and 1<i, jem.

19

Our main result is the following theorem, which gives
explicit  sufficient for the oscillation
{component-wise) of every solution of Eq. (15). As may be
verified, a similar result holds for non-autonecmous
impulsive systems where, oscillations are understood in

conditions

the sense of definition 3.

Theorem 2: Assume that condition Eq. (16) holds. Set

Tl
g =min| g}’ -y qgf)‘ for1</ <N,
siz P
# amn
q, =min| q;" = 3" qff"| [for 1< £ <N
=
Suppose that
q20 for 1<8<N (18)

and that every solution of the scalar delay impulsive
differential equation

N

w(t)+ M q,u{t-o,)=0,t¢s

£=1

ol
Au{t, )+ ¥ q,uit, -5,)=0,t,€8
£=1

(19)

oscillates. Then, every solution of Eq. (15) oscillates
component-wise.

Proof: Assume conversely, that Eq. (15) has a non-
oscillatory solution in the sense of defimition 4. Then,
since (Q, 1s an mxm matrix and 0,0, Eq. (15) has a non-
oscillatory solution x(t) = [x,(t), x,(t), ..., x,{0)]" in the sense
of Definition 3. That 1s, x(t) 13 not finally zero and for t
sufficiently large, each component x(t), 1 <1<m, has finally
constant sigrum.
For sufficiently large t, set

§ =sgnx (t)andy,(t

=8x (t)forl<i<m

Then, for1<i1<m and sufficiently large t, it follows from
Eq. (15) that
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or equivalently,

/N
[y (0-py.(t-0)] + X[y, (t-0,)
£=1
+ ¥ ql%x, (t —05)} =0,t¢ §
#1
J N
:|+ ;[qn i )

)}o,tes

Aly, (t,)-pyi(t

+qumf>x t, —

1#t

Hence, for 1<i<m and for sufficiently large t,

[v.(t)-py. (t- r]+2[ (t-a,)
+ X a,%8.x

L

(t-o, }o,tes
(20)

A[y](t —py,(t 7r]+2[qm v, (L, —a,)

+§:qgm)8‘xJ (t,— 01)} <0,t£8
b}

Set

Summing up (vertically) both sides of inequality
Eq. (20) for 1<i<m and using the defimtions of g, and gy in
Eq. (17), we find that for sufficiently large t,

N
v(t)+ quw(t -0,)<0,tg 8
= (21)

<0tES

As w(t)»0 and q, =0, it follows that v(t) is a
decreasing function. Hence, either

i — o 22
tl_l}{ll) v(t) (22)

or
limv(t)=Le R (23)

t— 4+

First, we claim that condition Eq. (22) is impossible.
Otherwise, v(t)<<0 and at least one of the components y,(t)
would be unbounded. But then finally,

w(t)= Y. (1)

1=1

Sgplyl(tf’c)igyl(tfr):w(tfr)

This implies that w(t) 13 bounded, which 15 a
contradiction. Thus, condition Eq. (23) holds.

We now claim that L = 0. Indeed, by mtegrating
mnequality Eq. (22) from t, to t and by letting t — <, we
obtain

w | QW (sfcl)ds+
L 2 J‘ 2 q.fﬂ t SO

bty e

which implies that wel.'(t;, <) Then, v, € L, (t;, «) for
l<izm sov € L' (t,, ). But then . = 0, which proves our
claim. Thus, as V(t) decreases to zero, it follows that

v(t)>0 and v(t)<w(t) (24

Then condition Eq. (21) unplies that the finally
positive function v(t) satisfies the inequality

(t)+ ¥ qv(t-t,)<0,te s
= (25)
Av{ qu t, —T,)<0,1, €8

£=1

From corollary 1, it follows that Eq. (19) has a finally
positive solution. This contradicts the hypothesis and
thus, completes the proof of Theorem 2.

Remark 1: It can be shown that Theorem 2 holds word
for word for systems of the form of Eq. (15) with the
continuous Q: [tg, =) = R¥™ matrix functions. In this case,
the coefficients ¢, of Eq. (19) are the functions

. (t) = min| ¢ (1) - ilq](f)(t)‘ for1<£<N,t¢ S
1#1

[#)

g ||forl=Z<N, ke N, 1, €3

{, =In qu 2

1=1=m
1=1
j#i

and oscillation 1s in the sense of definition 3.

Remark 2: Tn the special case where, the diagonal matrix
P in Eq. 15 is a multiple of the identity matrix, that is, when

P, =PpP;=...=P, =PE [0=1] (26)
we have

vit)=w(t) —pw(t—1) (27)
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By substituting Eq. (27) repeatedly into inequality
Eq. (21), we find after £ steps, that finally

V() Y, {iplv(t 5, n)} <otes

£=1 i=0

il L
AV(t, )+ Y gy {Eplnv(tk -G, -1 T)} <0,t. €8
i=1 1=0

Hence, we obtain

Theorem 1.

the following extension of

Theorem 3: Assume that conditions Eq. (16 and 18) are
fulfilled and that the following hypothesis holds:

Condition 4: There exists a non-negative integer £ such
that every solution of the delay impulsive equation

il £
v{t)+ Zq{Zplu(t -G, i’c)} =0,le 8
i=1 =0
il £
Au(t, )+ qu{zl)l“u(tk -g, -i ’c)] =0,t,€8
i=1 1=0

(28)

oscillates. Then every solution of Eq. (15) oscillates
component-wise.

Hypothesis condition 2 is, for example, satisfied when
for some £20,

N <
Eq{ZP‘(q +ir)} >e
i=1 =0

or equivalently

(29)

£=1 1=0 i=0

N IS g
Z[%C&Zp‘ +q, pr‘iJ >e

But it can be shown that inequality Eq. (29) is

satisfied if and only if
o N
J+{Ep‘ij{2q,}r >e!
1=1 i=1

£=1

N N
Y ( Y40,
1=0
or equivalently,
o

qu (o] +;iq >
1-p l! (l—p)2 =

£=1

(30)

The concluding result 13 now an immediate

consequence of the discussion.

21

Corollary 2: Assume that conditions Eq. (16, 18 and 30)
are satisfied. Then every solution of Eq. (15) oscillates
component-wise.

CONCLUSION

The oscillatory criteria stated and proved above are
sufficient and are readily extendable to systems of neutral
delay impulsive differential equations with variable
coefficients.
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