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Abstract: Our aim in this study, is to develop a linearized oscillation theory for nonlinear neutral delay impulsive

differential equations. Precisely, we prove that a certain nonlinear neutral delay impulsive differential equation
has the same oscillatory character as its associated linear impulsive equation.
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INTRODUCTION

Recently, linearized oscillation theory for first order
differential equations with and without impulses have
been discussed by Ladde et al. (1987), Bammov and
Hristova (1987), Bammov and Simeonov (1998), Zhang et al.
(2004), Xia et al. (2007) and Agarwal et al (2000).
However, there appear to be little or no results in
linearized oscillations for first order nonlinear neutral
delay impulsive differential equations. In this study, we
develop some results on linearized oscillation theory
which parallels the so-called linearized stability theory of
differential and difference equations. Roughly speaking,
we prove that certan nonlinear neutral delay impulsive
differential equations have the same oscillatory character
as the associated linear neutral delay impulsive differential
equations.

Before the formulation of the problem considered in
this study, we present some basic definitions and
concepts that will be wuseful in ow discussions
throughout.

Let, S: = {t,}, denote the set of time pomnts of
impulses, where E represents a subscript set which can be
the set of natural numbers N or the set of integers 7 and
satisfy the properties:

C1.1: Tf {t.},; 1s defined with E =N, then 0 <t,<t,< ... and

lim t, =+oo
k—ptee

C1.2: TIf §t.},; is defined with E = Z, then t;<O<t t,<t, .|
fork e Z,k#0and

lim t, =too
k—te

Let, . R xR —=Rand f; R =+ R, k € Z be continuous
functions and let x: R = R, then

X =f{tx), t'#t,

(1.1)
Ax(t)|

b=ty fo(x), t=t,

Where,
Ax =x(t, +0)-x(t, -0)

Definition 1.1: The function x = @(t) is a solution of (1.1)
in the interval J: = (e, B) if

» @) 18 differentiable in J, t#t,, k € N and satisfies the
condition
Q') =1t o)) forallt e J, t#t, andk e N

s @(t) satisfies the relation
O+ 0 - @t - O =L (p(t,-0)), e Jandk € Z

Definition 1.2: A solution x is said to be finally positive,
if there exists T=0 such that x(t) is defined for t>T and
x(t)y = Oforall t=T:

»  Fnally, negative, if there exists T=0 such that x(t) 1s
defined for t>T and x(t) < O for all t>T

»  Non-oscillatory, if it 15 esther finally positive or finally
negative

»  Oscillatory, if it 18 neither finally positive nor finally
negative (Lakshmikantham et al., 1989)

Usually, the solution x(t) for t € I, t£S of a given
impulsive differential equation or its first derivative x'(t) 1s
a piece-wise continuous function with points of
discontimuity t,, t, £ INS. Therefore, m order to simplify
the statements of the assertions, we introduce the set of
functions PC and PC", which are defined as follows:
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Let, r e N, D ¢ R and the sequence S be fixed.

Definition 1.3: PC (D, R} 1s the set of those functions
which are continuous for all t € D, tgS, vk € N and have
discontinuity of the first kind fort ¢ Sand ke N.

Definition 1.4: PC* (D, R) is the set of those functions
which are r-times continuously differentiable forallt € D,
t#S, vk € Nand have discontimuty of the first kind for
teS and keN (Bamov and Simeonov, 1998
Lakshmikantham et al., 1989).

To specify the points of discontinuity of functions
belonging to PC or PCY, we shall sometimes use the
symbols PC* (D, R; 8) and PC* (D, R; S), reN.

Now let us consider the nonlinear neutral delay
unpulsive differential equation

x(1)-p(Ve(x(t-1)| +a(t)h(x(t-0))=0, tes
A[X(tk)-p(tk)g(x(tk —’c))}-&-qkh(x(tk -0))=0.t,€8
(1.2)

where, 10 and 0, g,>0 and associate with it, the following
hypotheses:

pe PC'(I,,R,}, g€ PC(I,, R, ), g C'(R, R)

(1.3)
he C(R, R), 1>0,0,q, 20
where, I, = [t,. «) and
lim p(t) =p, €[0.1), (1.4
}g}}aq(t) =4, (0. +o)

ug (=0 for u=0, g (wW<utoru>0andg (u) > u for u<o,

i 80 g (1.5)
u—=0 11

uth (u)=0 for u=0 and
L ) (1.6)
u—0 11

Always when at least one of the conditions (1.5) or
(1.6) holds, we will refer to Eq (1.7):

[y(t)-pyy(t-7)] +quy(t-0) =0, te S
ALyt )-poy(te -t) ]+ 4uy(t -0} =0, t, €8

(1.7)

as linearized in respect of Eq. (1.1).

The following lemma and theorem extracted from
Bainov and Simeonov (1998), are needed in establishing
the oscillatory conditions of the problem in question.
They may also have further applications in analysis.

Lemma L.1: Tet, pe [0, 1), T £ (0, =), t, e R, x € C([t; - T, o),
R,) and assume that for every >0 there exists a t.>t; such
that

x(ty<(pre)x(t-t)+e t2t, (1.8)
Then,
limx({t)=0

Consider the linear impulsive differential equation
with delay

X (t)+p(t)x(t-1)=0, t& 8 (1.9)
Ax(t )+ px{t, —T1)=0,t, €8
together with the corresponding mnequalities
X (t)+p(t)x(t-1)<0, t& 8 1.10)
Ax(t )+ px{t, —T)<0, t, €8
And
(1.11)

X (t)+p(t)x(t-7)20, te S
Ax(t)+px(t, —1)20,t, €8

We assume that the following condition is fulfilled:

C13:pePC(R.R)andt = 0.
Our aim, here 1s to establish the following results.

Theorem 1.1: Let condition C1.3 be fulfilled and let
there exist a sequence of disjoint intervals I, = [{, 1,] with
MNu-Cn = 21, such that:

s ForeachneN,te] andt, €17,

p{t)=0,p, 20 (1.12)
s There exists v, £ N such that for n>v,
Ty
_[ p(s)ds+ E P 21 (1.13)
Ty =T T]n—TStk<T]n
Then,
¢+ The inequality (1.10) has no finally positive
solution
¢+ The inequality (1.11) has no finally negative
solution

¢ Each regular solution of Eq. (1.9) is oscillatory
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Corollary 1.1: Consider the Eq. (1.14):

=0,¥t 3

(1.14)

Let, p. g €(0, ) and q, € [0, =), T,, 0,20 for 1<j<M
and 1 <1< N and assume that

(1.15)

D=

p; =1

Then the followimng statements are equivalent:

*  The Eq. (1.14) has a finally positive solution
¢ The characteristic system

—l+k2pe (1-u) -#—Eq1 S0,
1= (1.16)

*LHMEPG S(1-p) +Eq,n )y =0

1=1

where, A and p<1 are constants, has a solution (4, p) e R
X (o0, O]

¢ The inequality

A{X(tk)—ipjx( )}qu x(t,—0,)<0,¥t, €8
1=1

(1.17)
has a non-mcreasing finally positive solution

¢  There exists an g ¢ (0, 1) such that for every
e € [0, ], the inequality

- 30 aii)
+i(1—8)q1X(t ~0)<0,t£8

A{x(tk) (18)ij(tfl)}

M
+> (1-¢€)q, x(t, -0, ) <0t € 8
1

i=

1=

1

has a non-mcreasing finally positive solution.

RESULTS

Our aim in this study, is to establish conditions for
the oscillation of all solutions of Eq. (1.2) m terms of the
oscillation of all the solutions of Eq. (1.7) and vice versa.

We recall (Bamov and Simeonov, 1998) that every
solution of Eq. (1.7) oscillates if and only if the
characteristic equation:

H(A) = Ape™(1-u)™

(2.1)
+qe(1-p)" =0
where,
-m, =—i[t-7, t}, if >0,
nT {HH =it, t-1), if T<0
and
-m, =-i[t-0c, t), if 620,
e _{mz =ift,t-0), if 6<0

has no real roots. As p, £ [0, 1), Eq. (2.1) has no roots in
[0, =) and so every solution of Eq. (1.7) oscillates if and
only if Eq. (2.1) has no negative roots.

Notice that Eq. (2.1) is built from the characteristic
system

A= apye T (1-p)" + qe” (1-u)* =0
—=upee (1 )" + g™ (1-p)" =0
with the solution (4, ) satisfying the relation

M:@k
9

Theorem 2.1: Let conditions (1.3-1.6) be satisfied and that
Eq. (2.1) has no real roots. Then every regular solution of
Eq. (1.2) oscillates.

Proof: Let us assume on the contrary, that Eq. (1.2) has a
non-oscillatory solution x(t). We further assume that x(t)
1s finally positive. The case where x(t) 1s finally negative
1s similar and 1s omitted. Set

z(t)=x(t)-p(t)g(x(t-1))
Then finally,
7Z(t)=-q(t)h{x(t-o)) <0 (2.2)
t

Az(t,) = —qh(x(t, ~5))<0
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and so z (t) is a decreasing function. We claim that x (t) is
bounded. Otherwise, there exists a sequence of points
{t,}7,-, for which

lim t, =+oo, lim x(t, )=+
n—y+es ty —s e

x(t, ) =max x(s)

n
55ty

Then from conditions (1.4) and {1.5)

z(t,) =x({t,) -p(tn)g(x(tn -’c)) >x(t,)-p(t,)x{t, -1)

Ex(tn)[l-p(tnﬂ —3 too g8 11— +eo

which contradicts the fact that z(t) 1 decreasing. Thus,
X (t) 1s bounded and so

lim z{t}=Le R (2.3)
t—stes
But then, the condition L. < 0 cannot occur since
(2.4)

jz(s)ds =

follows from L=,

On the other hand,

[(x(s)- psrg(x(s - 0))ds =

Ta

%ig{jx(s)ds— j‘p(s)g(x(s —I))ds}

—_]riiri{‘i-x(s)ds _ TJ:I p(s+ T)g(x(s))dS} = yig[]-x(s)ds -

Tg

- _[ ps + Tg{x(s))ds — j‘p(s+r)g(x(s))dsf _[ x(s)ds}

To—tT T—1

= hm{Tjj(x(s) —pis+ T)g(x(s)))ds + j_

T
Ta

x(s)ds}

T

- _[ p(s + Tg(x(s))ds

To-tT

The

%E{Tr(x(s) —ps+ T)g(x(s)))ds+ j

Ta —T

X(s)dsJEO

and

_f p(s + T)g(x(s))ds <0

To-tT

This contradicts condition (2.4), hence, 1.>0.
If L=0, then

I X(s)ds =co
Ty
Since, x 18 bounded, 0 < x(s) < M, hence,

inf m

O0=u=M 11

=m:>0

by Eq. (1.6) and what is more, h (1) > 0, u=0, Therefore,
h (u)zmu and O<u<M, which implies

- Tq(s)h(x(s —G))ds <

(2.5)
—J'(qD —g)m-x(s—0)ds=—e
Ta
This contradicts the statement
tlirJrr:Dz(t) =L>0
hence, L = 0. Thus,
L:tlirg[x(t)er(t)g(x(tf’c))]:O (2.6)
From Eq. (2.6) follows
x(t)+p(t)g(x(t—r))<s
ift>"f, hence,
0<x(t)<—p{t)g(x(t—1))
te<(e—py)x{t-T)t+e
where, € € (0, 1 +p,) is given. Then by Lemma 1.1,
lim x(t) =0 2.7)
tytee
Set
s(x(t ) h(x(t o))
P{t)=p(t dO(t)=q(t
(0=p(0® ot et =a) "
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From the hypotheses and Eq. (2.7), it follows that

lim P(t) =p, €[0,1), lim Q(t) =q, €(0, )

t—tes

and

[x(t)-P(t)x(t-7)] +Q(t)x(t -0} =0, te §
A[x{t,)=P(t,)x(t, —7) |+ Qux(t, —0) =0,t,€ 8

(2.8)

where, Q, = q.. We integrate both sides of Eq. (2.8) from
tto +eo, with sufficiently large t £ [T, <) and from Eq. (2.6)
obtain

x(t)-P(t)x(t-T)+ TQ(S)X(S—G)
ds+ Y Qux(t, ~G)=0

t<t,

(2.9)

Again, set

wit) = +JTQ(s)x(s ~o)ds + Y Qux(y, o) (210

t<t,
Then finally, w (t) > 0 and

w(t)=-Q(t)x(t-0)<0,te S
Aw(t, )=-Q.x(t, —o)<0,t, 8

__Aw(t1o) oy
Q(t, + o)

Substituting Eq. (2.10) and (2.11) into Eq. (2.9), we
obtain, for t sufficiently large,

, QL) . _
w'(t)-P{t-o) Q(t_r)w (t-T)+Q(t)w(t-oc)=0,t£ 3
Aw(t,) - P(t, fc)ﬁmv(tk 0+ Quwl(t, - o)=0,
eSS

(2.12)
Clearly,

TLet us first assume that p,>0. Then, for any e € (0, 1).
Eq. (2.12) yields

w(t)—(1-e)p,w{t—7)+(1-8)qw(t —0)<0, te S
Aw(t, ) —(1-g)pAw(t, —T)+{1-€)q,w(t, —5) <0,
t,ES

(2.13)

By virtue of Corollary 1.1, Eq. (2.1) has a real root.
This 1s a contradiction and the proof 1s complete when
pr=0.

Next, we assume that p, = 0. Then, the inequality
(2.13) reduces to

(2.14)

w(t)+(1-2)qw(t-0)<0, te 8
Aw(t ) +{1-€) q,w(t, —0)<0,t, €8

with its characteristic system as

“A+{1-8)qe™ (1-p)"* =0
—u+{1-e)q,e”(1-pn)" =0

Clearly, the solution (A, n) of the system satisfies the
relation

M:h;\»
4

This enables us to build the characteristic equation

H(A)=—-A+({1-€) que“[l—q“kl] =0
a

of the corresponding mequality (2.14). As it stands, the
equation has no negative roots. Hence, by theorem 1.1 (i),
the mequality (2.14) cannot have a finally positive
solution.

This contradicts the fact that w(t) > 0 and the proof of
theorem 2.1 is complete.
result

The following 1s a partial converse to

theorem 2.1.

Theorem 2.2: Consider the neutral impulsive differential
equation

[x(t)-px(t-7)] +q(t)h(x({t-0))=0.1¢ S
A[X(tk) —pex(t, —T)J+qk h(x(t, —0))=0.1, €83
(2.15)
where,
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Py € (0,1), T€ (0,%0), g€ PC{[ty,0),R. ), 216)
G, q, 20,he C(R,R)

Assume that there exist positive numbers g, and &
such that
q{t)<q, for t =t (2.17)
and
either 0 <h(u)<u,for0<u<3

or0zh{u)zu, for-8<u=<0

(2.18)

Suppose, that Eq. (2.1) has a real root. Then,
Eq. (2.15) has a finally positive solution on [t, - 1, o],
where
r =max{t, &}

Proof: Let us assume that condition (2.18) holds with
O<h(uwy<u for O<u<d. The case where, Ozh{u)zu for
-0<u<01s similar and 1s omitted. Choose d, d; € (0, 8)
and consider the solution x (t) of Eq. (2.15) with the
initial conditions,

x(t)=dfort, —r=t<t,
and
x(t,)=d, Fort, —r <t, <t,

Consequently, x (t) is left continuous on [t; - 1, =) and
satisfies the equation

X(t) —px(t-1) +q(t)h(x{t ~ )} =0.t&
AX(t, ) —pAx(t, —T)+ g, h{x(t, —0)}=0,t, €8

(2.19)

almost everywhere on [t,, «).

Now, we prove that x (t)>0 for tzt, - r. First, we claim
that as long as x ()0, it remams strictly less then &.
Otherwise, there exists a T, such that

0<x(t)<dfort,—r<t<T and x(T,)=38

Set
z(t) =x(t)-p, x(t-1)

Then, for t;<t<T),
Z(t)=—q(t)h{x(t-0))<0,te 8

Az(t,)=—q.h(x(t, ~6))<0,t,€8

and so
z(T ) <z(t,)

Hence,
B=x(T ) <px(T, 1)+ x{t,)—p,x(t, — 1)
<p,8+8-p,6=5

which 1s a contradiction.

Now assume conversely, that there exists T > t; such
that
O<x{t)<dfort,-r<Tandx(T)=0 (2.20)

FromEq. (2.19)and conditions (2.17) (2.18) and (2.20),
we have

{X’(t) —p, X (t-T)+q,x(t-0) 20
Ax(t, ) - p Ax{t, —T)+q, x(t, —0) =0

almost everywhere, on [f,, ). By owr assumption, the
characteristic equation

H() xxpue“{l‘ikx]
a

+qnel° 1,qux =0
9o

1s assumed to have a real root, say A,. As p, € (0, 1) and
o0, 1t 18 seen that A,<0. Therefore,

i[tg -1 t)
x(t)= ekﬂt[l —q“klu}

9o

is a positive, left continuous and non-increasing solution
of Eq. (1.7). From Corollary 1.1, it follows that x(t)>0 for all
t2t, and the proof of Theorem 2.2 is complete.

A combination of Theorem 2.1 and 2.2 yields the
following linearized oscillation result for neutral impulsive
differential equations.

Corollary 2.1: Assume that conditions (1.6, 2.16-2.18) are
satistied and suppose

lim gt} =q, € (0, ).

e

Then every solution of Eq. (2.15) oscillates if and
only if every solution of Eq. (1.2) oscillates if and only if
Eq. (2.1) has no negative real roots.

CONCLUSION

Certain nonlinear neutral impulsive differential
equations with deviating arguments have the same
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oscillatory character as the associated linear neutral
impulsive differential equations with deviating arguments.

Precisely, we have been able to establish the
necessary conditions for the oscillation of all solutions of
the nonlinear neutral delay impulsive differential
equations in terms of the oscillatory conditions of the
solutions of the corresponding linear neutral impulsive
differential equations with deviating arguments and vice
versa.

REFERENCES

Agarwal, RP., SR. Grace and D. O’Regan, 2000.
Oscillation theory for difference and functional
differential equations, Kluwer Academic Publishers,
Dordrecht/Boston/London. ISBN: 0792362896.

Bainov, DD. and S.G. Hristova, 1987. Existence of
periodic solutions of nonlinear systems of differential
equations with impulsive effect. J. Math. Anal.
Applied, 125: 152-202.

Bainov, D.D. and P.S. Simeonov, 1998. Oscillation Theory
of Impulsive Differential Equations. International
Publications Orlando, Florida.

Ladde, G.8., V. Lakshmikantham and B.G. Zhang, 1987.
Oscillation Theory of Differential Equations with
Deviating Arguments. Monographs and Textbooks
m Pure and Applied Mathematics. Marcel Dekker,
New York, Vol. 110. ISBN: 0-8247-7738-7.

Lakshmikantham, V., D.D. Bainov and P.S. Simeonov,
1989. Theory of Impulsive Differential Equations.
World Scientific Publishing Co. Pte. Ltd. Singapore.
ISBN: 9971-50-970-9.

Xia, Y.H., I. Cac and M. Han, 2007. A new analytical
method for the linearization of dynamic equation
on measure chains. J. Differ. Eq. 235, (2): 527-543.

Zhang, F.Q., 7. Ma and I.R. Yan, 2004. Boundary value
problems for first order impulsive delay differential
equations with a parameter. J. Math. Anal. Applied,
290: 213-223.



