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Global Attractivity of a Positive Periodic Solution for Delayed Predator-Prey
System with Beddington-De-Angelis Functional Response and Stocking

Yan Fan
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Abstract: In this study, we consider a delayed predator-prey system with Beddington-De-Angelis functional
response and stocking. By using coincidence degree theory, the existence of positive periodic solutions for
above system iz established. Then by applying the existence result of positive periodic solutions and
constructing a Lyapunov functional, the global attractivity of a positive periodic selution for above system with
Beddmgton-De-Angelis functional response and stocking 1s established.
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INTRODUCTION

We consider the following nonalltononcous
predatrrey systermn with Beddington-De-Angelis functional

response and harvest (or stocking).
e

+h,(t

8, (0%, (1)
A (D) +x,(t)+ B, (1, (1)
—a, (1) —b,(tx, (1) +
s, (U, (t—T)
A1(t) X (t - F) +B (t)Xz (t - F)

X(0=x(0) &b ()~

X, (0 =x,(1)

(D
Where:
x,(t) and x,(t) = The population density of prey,

predator at time t, respectively

h,(t) and h,(t) = The stocking of prey, predator at time t,
respectively

a, b, 8,(i#n) = Positive continuous w-periodic
functions

r = A positive constant

On the existence and global attractivity of positive
periodic solutions to system Eq. (1), few results have been
found in the present studies. This motivates us to
consider the existence and global attractivity of positive
periodic solutions to system Eq. (1). In this study, our
purpose is to derive a set of easily verifiable.

Sufficient conditions for the existence and attractivity
of a positive periodic solution for system Egq. (1).
Existing results on the existence and attractivity of a
positive periodic solution in periodic population models
often fall into one of the following two categories: The
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results of the application of the contraction principle or
fluctuation principle, which establish both the existence
and attractivity of the periodic solutions in periodic
population models with time delay (Kilang) (Kuang, 1993);
the results of application of becoming Brower fixed pomt
theorem and Lyapunov functional with the results of
persistence of positive solution, which first establish the
existence of positive periodic solutions in periodic
population models with time delays by using the Brower
fixed pomt theorem and the results of persistence of
positive solutions, then establish the attractivity of
positive periodic solutions in periodic population models
by using a Lyapunov functional (Freefman and Peng,
1999; Song and Chen, 1998; Hongliang and Kuiehen,
2000). Though those methods often allow the investigator
to address the stability issues of the positive periodic
solution of population models, the conditions for the
existence part are often unnecessary numerous, tedious,
stringent and difficult to satisfy.

In this study, using a sinilar way to that in
Zhang and Wang (2006) and Zhang and Li (2006), we first
establish the existence of positive periodic solutions of
system Eq. (1) by means of using coincidence degree
theory (Mawhin, 1979) and topological degree theory,
then establish the attractivity of positive periodic
solutions for system Eq. (1) by uwsing a Lyapunov
functional.

In this research, by applying Mawhia (1979)
continuation theorem, we establish the existence of
positive periodic solutions for system Eq. (1). The study
shows the results, by constructing a Lyapunov periodic
solution of system Eq. (1).
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EXISTENCE OF POSITIVE PERIODIC SOLUTIONS

In this study, based on Mawhin’s continuation
theorem, we will study the existence of at least one
positive periodic solution of system Eq. (1). First, we shall
make some preparations.

Let X, Z be red Banach spaces, L: DomlcX—=Z a
Fredholm mapping of index Zero and P: X—X, Q: 77
continuous projectors such that Imp = Kerl, KerQ = ImL
and X = KerL.aKerP, 7 = ImLaIm(Q). Denote by Lp the
restriction of L to DomlKerP, KP: ImL-Kerp/Doml
the inverse (to Lp) and T: ImQ-Kerl. an isomorphism
of ImQ on to KerL. For convenience of use, we
mtroduce the continuation theorem (Mawhin, 1979) as
follows.

Lemma 2.1 let £ ie be an open boumded set and
N: X—7 be a continuous operator which is T-compact
on Q< ie, QN: Q-7 and Kp(I-Q) V: Q-Z are compact.
Assume that

Foreach A (0,1} ,xe aQDoml LX #ANX

Foreach x € o Q[ Kerl. , QNX =0

Deg A{JONX ,QMKerL 0] 20

Then the equation 1.3 = NX has at least one solution
in Q@M Dorml.
In what follows, we shall use the notations:

—j f(tydt , f' = min |f(t)\ £ = Max\f(t)|

Where, f 18 a continuous W-periodic function.
Theorem 2.1 Assume that,

M
A+ sy +
2b1(
1
o B a2 sl | JsIF + abih )+
bl Bl

1
by’

158 \m
[al (Bl) ] ]

Then system Eq. (1) has at least one positive
W-periodic solution.

Proof: Consider the following system:
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w(t)=a,(t)~ b, (t)e"® ~
5, (e

A (D +e"™ + B (e

W (1) = —a,(t)—b,(t)e=" +
s, (e

A(D+e"" 7 + B (e

+h, (e ™
2

+h, (e

Where all coefficients in system Eq. (2) are the same
as these in system Eq. (1). Tt is easy to see that if system
Eq. (2) has one W-periodic solution (u,"(t), u,(t))", the
(exp[u, (0], explu, ()] is a positive W-periodic solution
of system (1). Therefore, for system Eq. (1) to has at least
one positic. W-periodic solution it is sufficient that
system Eq. (2) has at least one W-periodic solution. To
apply lemma 2.1 to system Eq. (2), we define

=7 ={u(t) = (u, (L0, ()" € (R,R*):u(t+w) =u(t)]

and

Ju = ew, <o u, 67| = 2 max

te(0,w)

any a €X(orZ).
Nu = (F,(t), F,(t)", ueX Then X and 7 are Banach
spaces with norm |+, let

1 (£
D=8 00" o A0 e
E(=-a(-bnes0s SOy e

A D+ 1B (e

du(t)

I3

Lu=v =" py= ju(t)dt neX Qz= _[z(t)dt ze7

Then it follows that

KerL =R*™* , ImL = {ZE Z: Iﬂw zZ(t)dt = O} is closed in Z.

dim Kerl. = R*** codim Im L and P, Q are continuocus
Projectors. Such that Im P = KerL, KerQ = Im L = Im(I-Q).
Therefore, 1. is a Fredholm mapping of index zero.
Furthermore,
KerpnDoml reads

the generalized mverse Kp: ImL-

Kp(z) = ju 2(s5)ds 7$IUW ju Z0)dsdt
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This
ONu :[lJ.WFI(S)dS , lj‘w F,(s)ds]"
wl w et
and
[ o 1 pwpt |
L (s - — L jﬂ F(s)dsdt +
- [ R
Kp(l - Q)Nu = v

jﬂ F(s)ds — éjﬂw jﬂ F(s)dsdlt +

1t W
=, B

obviously, QN and Kp(I-Q) N are continuous. It 15 not
difficult to show that Kp(I- Q)N(Q) is compact for any
open bounded set Q = X by using the Arzda-Ascoli
theorem. Moreover, QN({Q) is clearly bounded, Thus, N
is L-compact on © with any open bounded set £ < X

Corresponding to the operater egllation Lx = ANx,
Ae(0, 1), We have

u, (1) =AF ()
uw, (1) =AE (1)

3)

Assume that u=u(t) € X is a solution of system Eq.
(3) for a certain Ae(0, 1). Since (u,(t), u,(t)" € X, there exist
E. Mi €[0, w] such, that

y (€)= max u;(t) win)=minul(t) i=12
te[0,w] te[0, w]

Since, w/(§) =0, u/(n)=0, i=1,2

Then from this and system Eq. (3), we obtain

FE)=0 4
E(E)=0 (3
En,)=0 (6)
F,(m,)=0 (7
Equation (4) implies blen™ < + hMe=®), That
is ple™@ ¢ aMeu® Ly ¥ Then,
(8)

u, (g, )<ln{

syt T

1
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Equation (5) implies ple®®2) < g 4 h¥e (), That
is blzeuz(éz) <S§\"[e—uz(§2)+h12\"[ Then,
u, (8, )<ln{ o (s +JEY b hM)} (9)
2
Equation (&) implies bien ™ < gl _(;} , That is
1
1 1 S WM
>In -+ (10)
u, (M) LM( (Bl) ﬂ
Equation (7) implies
1owimz—o
M, up () 5,€ oM
bye™™ > AlMJreul(nz 9 pRen -l a2
Slz 1 5 WM
bT,[(al—(*) )
> . —a)
A+ 74 JET Y S 4b )+ —(al — (2L
2b‘( (55 2) blm(l (Bl))
From which, we obtain
Sl
(1 (—) )
u,(n,)>1In{ ay
bY[AM + (s +,/(s ¥ +4b‘hM)
' i(a‘ G
b' "' B
(11)

From Eq. (8-11), we have for vt € [0, w]

m{b}[ai —(%'I)M ﬂ < (1),
<h{2:)1 (al +,/(a1 Y + bk, )}

And

InQ<u, (t)<lr{2b

[ T )|

2

Clearly,
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1

I S1 i
{al (_Bl) H
an, 1I1|:1

- (s;"‘ + J&Y < abihy )}
2
|
In| — (2" + (" ) + 2bh" )}
{2b11 1 1 11

are independent of A. Now we take

=

1 1 S1 i
In[—{a, — (=",
Q={u ). o, cX.ue| O B,

In[.1(af* + (@)’ ) + 40y )]
u, e {]_n Q, ln{ﬁ(sy + \’(sgﬂ ¥+ 4b12h§4 }}}

This satisfies condition (a) of lemma 2.1

Next, we show that condition (b) of lemma 2.1 holds,
ie., we prove that when u € 2QMNKerL = 2QMNE?, QNu #
(0, 0)T. Otherwise, some constant vertor u with u € 2Q

satisfies
0 T

Then there exist t; € [o, w] (1 =1, 2) such that Qnu = (F,(t,),
F )" = ()", From F(t,) - Oand F,(t,) - O.
Following the arguments of Eq. (8-11), we have

%jﬂw F(t)dt
OQNu =

1 w
;L F,(H)dt

M
1] 8 1 M My 11 M
ue ]Il[w HI(E} ,]ﬂ(z—bi(al + (al ) +4b1h1 ]}
1 o M e 111 n!
uze{an, ln{zbg{sj + (53 ) +4b,h, r!(nfr)!

This contradicts the fact that constant vector u
satisfies u € 20

There fore, condition(b) of lemmazll holds. Finally, we
will prove the condition (¢) of lemma, to this end, we
define a mapping ¢: Dpy, Lx[0, 1] = x by

a,(t,) bt )e" -
uus, (t, )e™
At )re" +B(t)e”

—ua,(t,)—b,(t,)e" +

5,(t,)e”
At )+e™ +uB(t,)e™

+uh,(t, )e™
@{u,.u,u)=

+uh, (t,)e™
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Where, u € [0, 1] is a parameter. We only need to prove
that when

ue 2QMNKerl =2QNR* oy, u,,u) # (0,0)"
Otherwise, some constant vector u with u € 2L satisfies

a (t)-b(t)e" -

. 12)
s, (8, ) +uh, (£ )e™ =0
A(t)re" + Bt )e™
—ua, (t,)—b,(t,)e* +
(13)

s,(t,)e"
Aj(t)+e" +uB(t,)e"

+uh,(t,)e™ =0

From Eq. (12) and (13), by following the arguments of
Eq. (8-11).
And reducing p-0 or magnifying p-1, we obtain

M
uje lniMai—S—1 ,In !
bl Bl

w[ay +J(al) + avin ﬂ
1
u e [th, IH{TLI(S;‘“ +1}(s§“ )2 +4bLh! jD

z

This contradicts the fact thatu e 2Q. Hence, when
u € 2QMKerl., ¢(u, u, w # (0, 0, 0). According to
topological degree theory and by teking T = I since
KerL.=ImQ, we obtain

deg {JQNu, QN KerL,(0,0) ]

= deg{(p(ul,uz,l),Q il KerL,(O,O)T\JL

:deg{(p(ul,u2 0.QN KerL,(O,O)T}
(a,(t)— b, (t,)e",—b, (t,)e" +

5, (t, )e"
At)+e”

=de
& V. QN KerL, (0,0)"

Since the system of algebraic equation

a,(t,)-b(t)x=0

has a unique solution (x', y')" which satisfies: x>0, y'>0

then deg {TQNu, QNKerL, (0, 0)™
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al(tl)_bl(t1)eula_b2(t2)euz *

=de .
g L)el .QNKerl,(0,0)7
Alt)+e
7b1(t1)X* 0

=sighis (t,)A,(t,)x" i

BUATE 4y

(A (t)+x)

=sign(b, (t )b, (t,)x’y") =1
This completes the proof of theorem 2.1.
*  Global attractivity of a positive periodic solution

In this study by constracting a Lyapunov
functional, we derive sufficient conditions for the global
attractivity of a positive periodic selution of system
Eq. (1)

Lemma3.1 [Barbalat’s Lemma (Song and Chen, 1998),
Lemma 1.22]. Let {be a non-negative function defined in
[0, +o<] such that f 15 mterrable on [0, +] and 18 umformly
continuous on [0, +<<], Then

Hmf(t) =0

t—ee

Applying Lemma 3.1 to system (1), we can obtain the
following theorem.

MAIN THEORY

Theorem 3.1: In addition to the conditions in Theorem
3.1, we assume further that system (1) satisfies
M I M
. LSy Ay L5 B s Z T3 M
+4J(82 ) +4bh
2(A)b1(3 JEH 2hy )

YA

() X'

D'V{t) = t
() =sign(x,(t)— X())[ ) X

. SIMAM
2an

B +s)" m
Q(A) bl( . +‘\’(a1 ) +4bh )]

Then system Eq. (1) has at least one positive W-
periodic solution which attracts all positive solutions of
system Eq. (1).

Proof: By theorem 2.1 system Eq. (1) has at least one
positive W-periodic solution (x,"(t"), x, (t,))".

From this proof of Theorem 2.1,
vte R

Lo B am x 1 M M 2 11. M
—(a, - ()" <x{(thc—7(a +,f(a Y +4bh ")
IR B, 1 2b11 1 1 1
. 1
<x;(t) < —1(52” +1’(Sgﬂ)2 + 4b12h2” )
2b,

we have for

Suppose that (x,(t'), x,'(t,))" is a positive solution of
system Eq. (1) with the mitial conditions

se [-T,0],
se [-T.0],

@, (0)>0,

53 =20,
,(0) >0

X, (8) = @,(s) 20,
We define a Lyapunov fimctional as follows:

V() =[Inx, (1) ~Inx}(0)| +[Inx, ()~ Inx ()] +
AN ISTAN ) - x4 sYBIX ()

‘Xl(s) - x;(s)\ + B?’[Xf(s)‘xz(s) - xZ(s)‘]ds

Calculating the upper right derivative D'V (t) of V(t)
along the of systeem Eq. (1), we obtain

}+ sign(x, () —x5(t ))[X (t) XM(t)J

(0 x(t)

{sIA |, (0 x]O[+ YB3 (0]x, (0 X7 (0] + BI(0]x, (0 - x5 (0] (A

f((sg"Ai‘“\xl(tfr)fx;‘(tfr)\ﬂzB“"x*(t Dkt 7o xt - I)D(A 7B Dfx, (- T - X3 T))
< =b, (1)]x,(1) =] (1)) = b, (1], (1) =, ()] + D, (1) + D, () + D, (1)

AN (AN +sYBISO)]x (0 - X0 + B0, () - x5 (1))
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Where,
5 (t)X; (t) _ 5 (t)xz (t) < (t) - X* (t)
AWM+ (OB AD+x0+BOx, ) 1
D, = LOL L0 M. 10 N 10
A DX D+ B (k1) A D+x (1) + B (Hx,(t)
0 x, (1) =x; (1)
~h,(t) h() . ~h,(t)  h, (D) .
<0 xm " () >x,(1) OO (0 >x,(0)
_ | i) . _ ) hy) .
D,(t)= T ® + xf(t) X, () <x (1), D,(t) 7x2(t) + X,; © X, (1) <x (1)
0 x ()= X:(t) 0 x ()= X:(t)

Here are the following three cases to consider for D (t): (1) If x,(t) = x,'(t), then

—s, (DA, (D(x,(£) =X} (1) + 5, (DX} (£)x, (1) — s, (1)x, (), (1)
(A, (D+ X (0 + B, (D, (ONA, (D+x, (D + B, (0%, (1))
=8, (DA (DX, (1) —x,(0) — s, (0, (D, (1) — %, (1) + 5, (D)x; (D, (1) — %, (1)

D1 =

- (A (D+X 0+ B (X, (DA, (0 +x, () + B, (1x, (t)
(TAY 4+ (), (0 =%, (0] + ™0 x, (0 - x 0 Ja)”?

IA

o Ifx (1), then
5, (DA, (D, (1) —x, (1) =5, (0%, (0%, (0 + 5, (Dx, (Ox] (1)

(A, (£)+ %, (1) + B, (X, (0)A, (D) + X, () + B, (1)x,(t)
<A 8] ()%, (0 = x5 (O] + 5150 x, (0 — ] (0] (A

D1 (t) =

o Ifx,(t) =x,'(t), then D,{t) = 0. Hence, we have
Dy (1) < (57 AN + 515 (1), (1) = x5 (0] + 8! (0], (1) =X (1) ) (A
There are 3 cases to consider for D,(t):

If x, () > x,(t), then D,(t) < X: © X:(t) 0

. H&m<ﬁmmmgm:38—gg<gg—ggzo

* Ifx () =x, (t), thenD,(t) =0

Hence, D,(t)<0, Similarly, D,(t)<0. Therefore,
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IYVG)S4ﬁk&ﬂ—XKDMbHXJﬂ—XXH\5—5—%§3§3292\(0— o)+ B X“N X, (-, (1)
M s M M_* * M_* * 142 1 SZA?J[ MBM+51 M
{GIAT + 5% 0,00 X[+ st [ - xT0])a) <b - (5 + (&) +4bbh )]
x - sgdAlm B + 8, T
%, (0~ X (D) - b} s ﬂA)bﬂf3+J@»)+4bh ] 20
It follows from condition (1) and (11) mn Theorem 3.1 ACKNOWLEDGEMENT

that there exists >0 such that

DV < - >0 (14)

Integrating on both sides of in equality Eq. (14) leads to
.t ) .

VO+ o [ ()6 + x,(8) X ()] s S VO) <40, 120

Which implies

5, (D) — %, (1] € LT0,42)

Inx, () —Inx, ()] < V(D S V(0) <4o0, t>0 (I3

Inx, ()~ Inx(t) < VI S V(0 <+ee,  t>0 (16)

From the boundedness of x,'(t) and x,'(t) and
mequality Eq. (15) and (16), it follows that x,(t) and x,(t)
are bounded for t>0. Form the boundedness of x,(t) and
%,(t) and system Eq. (1), it follows that x,(t), x,"(t), x,{t),
3%, (1) and (x,(t-x," 1)), (:(1)-x,'(t)) remain bounded on
[0, +o0]. Hence, x,(t)-x,"(t) and x,(t)-x,(t) are uniformly
contimuous. By lemma 3.1, 1t follows that

Lim(x, (£) (1)) = Oand lim(x, () —x}(6)) =0

This implies that system Eq. (1) has a positive
W-periodic solution which attracts all positive solutions
of system Eq. (1). The proof is finished.
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