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Dynamic Bhaviour Under Moving Concentrated Masses of Elastically
Supported Finite Bernoulli-Fuler Beam on Winkler Foundation
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Abstract: The dynamic response of an elastically supported Bernoulli-Euler beam carrying moving masses and
resting on a constant elastic foundation 18 nvestigated m this study. This problem, mvolving non-classical
boundary conditions is solved and illustrated with 2 commonest examples often encountered in Engineering
practice. Analysis of the closed form solutions shows that, for the same natural frequency the response
amplitude for the moving mass problem is greater than that of the moving force problem for fixed axial force and
foundation modulli, The critical speed for the moving mass problem 1s smaller than that for the moving force
problem and so resonance is reached earlier in the former. Similarly, an increase in the value of foundation
modulli and axial force reduces the critical speed for both illustrative examples. The response amplitudes of both
moving force and moving mass problems was also found to decrease when both the foundation moduli K and

the axial force N are mcreased.
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INTRODUCTION

The analyses of elastic structures (beams, plates and
shells), resting on a subgrade, such as railway tracks,
highway pavements, navigation locks and structural
foundations, constitute an important part of the Civil
Engineering and applied Mathematics literatures. In
general, such analyses are mathematically complex due to
the difficulty in modeling the mechanical response of the
subgrade which is governed by many factors. When
these structures are acted upon by moving loads, the
dynamic analyses of the system become
cumbersome (Fryba, 1972). The crudest approximation
known to the literatures to this problem 1s the so called
moving force problem, in which the wvehicle-track

more

interaction is completely neglected and the action of the
vehicle 13 described as a concentrated force moving along
the beam (Muscolino and Palmeri, 2007). Several
researchers have considered vehicle-track interaction in
their analyses. These they commonly termed moving mass
problems. These researchers mclude Stamsic et af. (1974),
Milormir et ai. (1969), Clastornic et al. (1986), Sadiku and
Leipholz (1981) and Gbadeyan and Oni (1995). More
recently, Douglas et al. (2002) solved the problem of plate
strip of varying thickness and the center of shear. In their
work, they considered a free-vibrating strip with classical
boundary conditions, precisely, they assumed the plate
strip clamped at one end and free at the other end.

Pesterev et al. (2001) came up with a series expansion
method for calculating bending moment and shear force
in the problem of vibration of a damped beam subject to
an arbitrary mumber of moving loads. This kind of
solution, though could be accurate, cannot account for
vital information such as the phenomenon of resonance
in the dynamical system.

However, in all these, the problem of determining the
dynamic response of beams under the action of moving
concentrated masses has been almost exclusively
reserved for elastic beams having the normal ideal
boundary conditions. Such ideal boundary conditions
include among others, Clamped edge, Free edge, Sunply
supported edge and Sliding edge boundary conditions.
For practical applications in many cases, it is more realistic
to consider non-classical boundary conditions because
the ideal boundary conditions can seldom be realized. A
common example 13 the elastically supported end
conditions. As a problem of this kind, Wilson (1974)
studied the response of a cantilever plate strip restrained
elastically agamst rotation and subjected to a moving
normal line load. In a later development, Saito et al. (1980)
presented a theoretical analysis of the steady state
response of a plate strip constrained elastically along its
edges against rotation and translation under the action of
a moving transverse line load. The first 5 speeds of the
applied load for which a resonance effect occurs in the
system are plotted as functions of the edge constraint
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parameters. The profiles of the displacement and the
moment of the plate are also shown graphically for several
values of the load speed and the edge constraint.

Tt is remarked at this juncture, that the results of these
works on non-classical boundary conditions could
seriously be misleading as only the force effect of the
moving load 13 taken mto consideration m their
calculations while the inertia effect is neglected Thus, in
this study, the dynamical analysis of an elastically
supported fimte Bernoulli-Euler beam resting on a Winkler
elastic foundation and under moving concentrated
masses is considered. The object is to classify the effects
of the elastic constramts, foundation modulli and
prestress on the response of the beam.

Governing equation: The equation governing the
response of elastically supported Bernoulli-Euler beam on
a constant foundation and traversed by an arbitrary
number of concentrated masses is given by the 4th order
partial differential equation:

4 2 2
EIa V(zc,t)JrHa V(f,t)iNa V(}zi,t)
ax ot ax

+KV{x, 1) =P(x,1)

(1)

Where,

X = The special coordinate.

t = The time.

V(x,t) = The transverse displacement.

E = The Young’s modulus.

I = The moment of inertia.

n = The mass per unit length of the beam.
N = The axial force

K = The elastic foundation.

The moving load on the beam under consideration
has mass commensurable with the mass of the beam.
Thus, the load P(x,t) takes the form (Gbadeyan and Oni,
1995):

P(x. ) = P [1 - V(x, 1))] (2)
g
The operator 1) 1s defined as follows:
92 2 a2
P e P e P 3)
o T T

and the contimious moving force P acting on the beam
model is given by:

135

P =3 Mg8(x —ct) )
1=1

The time t 13 assumed to be limited to that mterval of
time within which the mass p 1s on the beam that 1s:

O<ct=L, (5
Where,
L The length of the beam.
d(x-ct) = The Dirac-delta function defined as:
0,x #ct
8(x—ct) = { (6)
e, ¥ =t
with the properties
(-x) =)
and
0, k<ax<b
[P8(x —k)f (x)dx =1 f(k),a <k <b 9
0 a<b<k

El

In mechanics, the Dirac-delta function 8(x) may be
thought of as a unit concentrated force acting at point
x = 0 (Gbadeyan and Oni, 1995). Substituting Eq. 2-4 into
Eq. 1, we have:

4
- I*Vix,t) N

2 2
“8 Vi, t) _Na V(x,t)

o o e +KV(x, 1)
m 2 2 2
= EIM%B (x —clt)|:l —;(;2 +2c, % +c! aaXZ]V(X, t):|

(8)

In this study, in the first nstance, a Bernoulli-Euler
Beam with classical boundary conditions at the end x = 0
and elastically supported at the end x = L. is considered.
For example, the associated boundary conditions at x=0
can be any of

V (0, ty=0=V"'(0, ) for the Clamped end
V (0, t)=0=V"(0,1) for the Simply supported end
VI1Y(0,6H)=0=V"(0,t) for the Free end

VI(0,0)=0=V"' (0, 1) for the Sliding end  (9a)
while for the other end x = L., we have
VUL D-K VL, =0
VUL )+ K V(L =0 (9b)
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Where,
K, The stiffness against rotation.
K, = The stiffness agamst translation.

Tt is clearly understood from (Sh) that K, = 0 and
K, = implies the Simply supported end, K, = < and
K, = oc implies the Clamped end, K, = 0 and K, = 0 implies
the Free end while K, = e and K, = 0 implies the Shding
end.

In what follows, we consider a Bernoulli-Euler beam
elastically supported at both ends, that 1s, with the
boundary conditions:

VI, DK,V (0, =0

VIO, ) +K, V0, 1)=0 (10a)
at the end x = 0 and
VL, 0K VL, =0
VUL O+K VL H=0 (10b)

at the other end x =L.
In both cases, the mnitial conditions, without any loss
of generality are taken as:

Vix,0)=0=V,(x,0) (11)

METHOD OF SOLUTION

In an attempt to solve Eq. (8), the method of
separation of variables 1s evidently napplicable because
it becomes difficult to get separate equations where
functions are functions of a single variable. In fact, a
closed form solution of the above singular differential
Eq. (8) does not exist. As a result of the above difficulty,
an approximate solution 1s sought. Here, we employ the
generalized finite integral transform defined as follows:

Z(n,t) = [V DY, )dx (12)

Where,

Vix.t) = ivizm, OV (x) (13)

n

V, (x) 18 the general kernel chosen so that the
pertinent boundary conditions are satisfied and V, is
defined as:

v, = [ V2 (odx (14)

136

V, (x) is the normal mode of vibrations of the beam
and is given as:

0,x 6
V,(x)=sin—=— L + A, co aX X+Cncosh n¥
(15)
where,
A, B, and C, are constants that can be determined
using the boundary conditions

6, is the mode frequency.
ANALYTICAL APPROXTIMATE SOLUTTION

By applying the generalized finite integral transform
(12) (8) can be written as:

rTO,.L,0)+ T, (1) + 2, (n,t) — 1, T, (1) + ,Z(n,t)
s m . 16)
+ To(O+ T, (O + T(h = ¥ —=T,(1)
where
L . (17)
" T
IV(x, t)V (x)- BZV(X t)dv, (x)
TO.L.t)=| X dx (18)
LV AV,E0 t)dV(x)
ax  d '
Tt =["Vix t)wdx
(19)
T, (1) = J‘ aV(Xt)V( x)dx
=3 [ 5e a0 Y0, o
= (20)
ECEIE LS AL
and
_p o o dVED
TE(t)fg " [ 8ix-et) o Va(x)dx o1

and T (1) = [ 8(x ~ )V, (x)dx

It 1s clear that the natural modes (15) satisfy the
homogeneous differential equation:
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d'v (x
Bl TQE e v, 0 =0 (22)

for the BEuler’s beam. The parameter wy is the natural
circular frequency defined by:

£l
o = 8n4EI (23)
L

Equation (22) implies:

RE t)idv(x)dx “g"l [veoveda 9

Thus, taking Eq. (12) into account,

4

T, (1) = EIP" Zn,t) (25)
L'u

Since, 7, (k.t) is just the coefficient of the generalized
fimite mtegral transforms,

Vix, 1) = ivizaq,t)vk(x) (26)
k=1 Yyg
Therefore,
PVix, b u d*V, (x) 27
e kz; kZ(k ) — 27
Then
T,(t) = ZZ(k t)_[ L, (X)V( X)dx (28)

Using the property of the Dirac-delta function as an
even function, it can be shown that:

2 nrct nrx (29)

8(x — Ct)—%Jr C0$ ——— €08

n=1

when use is made of Eq. (29) and (26), we have that:

1om
Tc(t)—fz

k=1

L - nrc. t
[J.D V, (x)V, (Odx + 2; cos——*

IDL cos % V, (Vv (X)dx}

(30)
Where,

Using similar arguments in Eq. (29) and (26), it is
straight forward to show that

T, () = %i%&(k,t)

k=1 MTy
LV, (x) ¢t (31)
— N (x)dx + 2 os
[ FRaRAGY 2 5
[ o 1 4V )
L dx

0

V. (x)dx

TE(t)—iZ M0t

k=t MTy

Ld®V,(x) nric,t (32)
L 5 V. (x )dx+22 03— -

_[Lcos nix d'V, (X)

0

V. (x)dx

By the property of Dirac-delta function in Eq. (7), it is
clear that:
T () =V, (ct) (33)

Substituting Eq. (25) (28) (30) (31) (32) and (33) into
Eq. (16), after some simplifications and rearrangements,
one obtains:

Z,(n, 0+ el Z(m, 1) —%iRl(k,n)Z(k,t)

k=1

i {iR e)Z, (k.0

1=1 k=1

i i SR, (en)Z, (I 0)+
26, TR, k)Z(k )+ 46, 3 cos ™R, (ko) (34)
k=1 n=1 k=1

Zt(k,t)+cfz R,(kn)Z{k,t)+

k=1

22 cos it g e n)Z(k, t)}

n=l k=1
:ZEVn(cit)
iz M
Where,
, EI§' K
W T 4 +—
uL-p
Ld*V, (x)
R, (k,n V. (x)dx
Gem) = L FERRACY

Ry Gm) == [V, (V. 00dx
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LdV,(x)

R, (k. )_—j V. (x)dx
R4(k,n):—j vk(x)vn(x)cos@dx
T, "’ L

LAV, (x)

R, (kn)=— j TR ()cos TL”de
R, (k, )_—ju L ZXEX) V. (x)cos % gx

Considering only a mass moving with ¢ and using
Eq. (15), thus (34) reduces to:

Zo )+ ol Z(n, 1) — %iRl(k,n)Z(k,t) +

k=1

[ER (kn)Z, (kt)+ 22 ECOS—R (k.n)Z, (k,t)

n=1 k=1
t
+202R kn)Z,k 0+ 43 Y oosnm R.(k.n)
n=1 k=1
ZG )+ Y Rk mZik, N (35)
k=1 |
+20222 cos%dRﬁ(k,n)Z(k,t)
n=1 k=1
8, ct 8, ct
Mg " L L
R sinn 2o C, cosh Byt
Where,
r-M (36)
Lu

Equation (35) is the transformed equation governing
the problem of a Bemoulli-Euler beam on a constant
elastic foundation. This coupled non-homogeneous
second order ordinary differential equation holds for all
variants of both classical and non-classical (elastically
supported) boundary conditions.

SOLUTION OF THE TRANSFORMED EQUATION

If we neglect the inertial effect of the moving mass in
Eq. (35), that is, setting I' equals to zero, we have:

Z, )+ el Z(n,th— %i R, (k,n)Z(k,t)

k=1

. B¢t 8

ot

(37)

Mg :
- 8 ct
C_cosh A

L

n

5, ct
K aninh"TC+

138

Equation (37) represents the classical case of a
moving force problem associated with our system.
Evidently, an exact analytical solution to the Eq. (37) 1s
not possible. Though, the equation yields readily to
numerical technique, an analytical approximate method is
desirable as solutions so obtained often shed light on
vital information about the vibrating system. To this end,
we are going to use a modification of the asymptotic
method due to Struble’s (Gbadeyan and Oni, 1995) often
used in treating weakly homogeneous
homogeneous nonlinear oscillatory systems.
purpose, Eq. (37) 1s arranged to take the form

and non-
For this

7, (n,t)+ [mf, - e*Rl(n,n)] Zin,t)—¢ ¥ R, (k,n)Z(k,t)
oo
si Oyt 08 Bt + (38)
Mg ’
H B, sinh%+ C, cosh Byt

Where

£

-_N
u

By this technique, one seeks the modified frequency
corresponding to the frequency of the free system due to
the presence of the effect of axial force N. An equivalent
free system operator defined by the modified frequency
then replaces Eq. (38). Thus, we set the right-hand-side of
Eq. (38) to zero and consider a parameter A-1 for any
arbitrary ratio €* defined as:

*

__® (39)
1+&
So that
g*=A+0(AN+ .. (40
Hence, the homogeneous part of Eq. (38) becomes
Z,m, 0+ [0 AR (nn)]
(41)

70,1 =23 R, (k;mZ(k, 1) = 0
ki

to order of A only. When A is set to zero in Eq. (41), a
situation corresponding to the case in which the axial
force effect is regarded as negligible is obtained, then the
solution of Eq. (41) becomes:

Z,(m,t)=C, cos (w,t-,) (42)
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Where,
C,, w, and ¢, are constants (43)

Furthermore, as A<1, Struble’s technique requires that
the asymptotic solutions of the homogeneous part of the
Eq. (38) be of the form

Znt)=¢ (nt) cos [wt- Qn O]
+AZ(n, 1)+ o (A (44)

When Eq. (44) 1s substituted into the homogenous part of
Eq. (38), one arrives at

—29(n,t)eo, sin[e. t — Q(n, )]+ 2, 1)
o(m, e, cos[e,t — Q(n, t)]+ AwiZ,
—AR, (m,n)¢(n, t)cos[m t — £(n, t)]

{q)(k,t)cos[mkt - ﬂ

(k] +AZ (k)
retaining term to o(A) only. The variational equations are
obtained by equating the coefficients of sin (w,t - Q (n,t}))
and cos (w,t - Q (n,t)) terms on both sides of the equation.
Thus, neglecting those terms that do not contribute to the
variational equations, Eq. (45) reduces to:

(45)

~AYR,(k,n)

k=1
k#n

[Zmn Q(n,t)d(n,t) - AR, (n,n)d(n, t)} (46)

cos[m,t —Q(n,t)] — 2w, ¢(n, t)sin[m,t — Q(n,t)]=0

From Eq. (46), the variational equations are obtained,
respectively as:

24, O, =0 (47)
and
20, O, 00,0~ AR, mmom =0 OO
Solving Eq. (47) and (48), respectively, we have:
¢ t)=d, (49)
where, ¢, is a constant.
om,n = REM o (50)
2m

and where, 0, 1s a constant.

Therefore, when the effect of the axial force 1s
considered, the first approximation to the homogenous
system is:

139

Z (0, 1) = [ Vit - Q] (51)
Where,
Yoy =, {1 _ XRI(H,H):| (52)
200

1s called the modified natural frequency representing the
frequency of the free system.

Using Eq. (51), the homogenous part of the Eq. (38)
can be written as:

Z, )+ Y. 2(n,t)=0 (53)

Hence, the entire Eq. (38) takes the form:

Z, 1)+ Y2, Z{n,t) =

S

8 ct t
n® +A, cos"—C
L

sin
PD

* (54)

h 8,ct
L

n

B, sinh% +C_cos
L
Where
Mg

u

P’ = (55)

Now, if the moving load has mass commensurable
with that of the structure, the mertial effect of the moving
mass is not negligible. Thus, I' # 0 and we are required to
solve the entire Eq. (35). This is called the moving mass
problem. We take note that, neglecting the terms
representing the mertia effect of the moving mass, we
obtam Eq. (38). The homogeneous part of this equation
can be replaced by a free system operator defined by the
modified frequency Yy, due to the presence of the effect
of the axial force N. Thus, Eq. (35) can be written in the
from

R, (en)Z, (k, 1)+

k=1

7, (0, t)+ Y., Z(n,t) + F{

22 icos
n=1 k=1

2¢y R,km)Z,(k, )+ 4c
k=1

%CtR,l(k,n)Zn(k,t) +

g t
22 COS£R5(1(,H)
n=l k=l L

nnct

TRﬁ(ksn)

7,k 0+6 Y R, (knzik b (56)

k=1

+ 20222 cos

n=1 k=1

0 ct

t
+A cos—2—

n

n

Mg sin

+

2= 0.ct

n

h
L

n

B, sinh% +C, cos
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Rearranging Eq. (56), we have

1"|:20R3 {n,n)+4c i cos nTnct R (n,n)}Zt (n,t)
n=l

Z,(nt)+
[1+F(R (n, n)+22005 L "R (0, n)ﬂ

|:YF2N +F(02R1(n,n)+ 2%°Y cosnTmRs(n,n)ﬂZ(n, t)
n=1

|:1+T‘[R2(n,n)+ 23;‘, cosnTmt R4(n,n)]i|

|:R (kn)+22cos T R Ak, )i|

Let)
|:1 +1"[R2(n,n) +2§ cosnTmt R, (n,n)ﬂz

i|i|zt(k=t)

|:1+1"[R2 (n,n)+2i cos?RAn,n)J
n=1

+3T

k=1
k#n

n=1

|:20R3 (k,n)+4c i cosnTmRs(k,n)

{ZR (k,n)+ 2¢” Ecos L R (k. )}

+ Z(k, 1)

{1+1"[R2(n,n)+ 22 cosllm:Rﬁt(n,n)H
(57)

As above, in the first instance, we shall consider the
homogenous part of Eq. (57) and obtain a modified
frequency corresponding to the frequency of the free
system due to the presence of the axial force and the
moving mass. An equivalent free system operator defined
by the modified frequency then replaces the Eq. (57).
Considering a parameter €, / 1 for any arbitrary mass ratio
I" defined as:

(58)

It 1s then clear that:

T =g,[l+o0(e,)+o(e)+... (59)

]
But, all the various time dependent coefficients of the
differential operator wlich acts on Z(n,t) n Eq. (57) can be

written in terms of e, when we notice that to o(g,), I' = g,
and
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1

1+, {Rz(n,n)ﬂ—ZE cosnTmR4(n,n)}
n=1

n:']ict R4(n,n)]+0(8§) +}

= {1 EO{RZ(n,n)+2i cos
n=1
where,

<1 (60)

EO[RZ(n,n)+ 221 cos nitct R4(n,n)}

Following the same argument as above one obtains:

= YTFN|:2 —£, (Rz(n,n) —YC—FZNRl(n,n)]:| (61)

as the modified natural frequency representing the
frequency of the free system due to the presence of both
the axial force and the moving mass.

Using Eq. (61), the homogenous part of the Eq. (57)
can be written as:

B

Z,(n+BZn 1) =0 (62)
Hence, the entire Eq. (57) takes the form:
Z,(n,+pZ(n,t)=¢" .
B, sinh n® +C, cosh n
(63)

where, e"=¢, g
Using the Laplace transformation techmque and the

convolution theory, expression for Zint) is obtained.
Thus, in view of Eq. (13), one obtains:

{ w{[mm

| ALB, (cos(y,t) —cos(B, 1)) —{ v, sin(B,t) B, sin(Y,1)) |

e e 1] Cabu(coshlr,) —cos(B0) +

[Bn YOJ B, (B, sinh(v,t)— v, sin(B,1)) }
{ . g,x 8 x }
sin

(64)

Vi t) = 21\/




J. Modern Mathe. Stat., 2 (4): 134-145, 2008

where,

6 ¢

n

L

Yo =

Equation (64) represents the transverse-displacement
response to a moving mass of a Bernoulli-Euler beam
resting on a constant elastic foundation for all variants of
both classical and non-classical (elastically supported)
boundary conditions. The corresponding moving force
solution is:

w P° 2 2
V(X,t)_gi{ w{[Ym+YO}
AT 1) -5000)

—(7, sin{ Y t) — Yo sin(y,t))
C,, Y (cosh(y,t) —cos( Yo, t))+

B Y, sinh(y t)—
Lo sin(Yot)
oX }JrAn cos[e X]+
L
B, sinh 0.x +C, cosh O,x
L L

. (9
sn
L
TILLUSTRATIVE EXAMPLES

(65)

In this study, the foregoing analysis is illustrated by
various practical examples. In particular, 2 cases are
considered, namely, Bemoulli-Euler simply
supported at the end x = 0 and elastically supported at the
otherend x = L.

Bernoulli-Euler beam elastically supported at both
ends.

beam

Example (i): The conditions are expressed as:

{0t)=0=V"(0,t)and V" (L,1)-

LVILH=0=VH{LO+kV L1 (66)
Hence, for normal modes:
V,(0)=0=V!"(0) and 67

Vo L) -k, V(L) = 0=V, " (L)+k,V, (L)

which mmplies that:
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V, (0y=0=V.(0) and
Vi (L) =k V(L) = 0= VI L)+ K,V (L)

Thus, it can be shown that:

A, =0=C_ and
g, .

k cos® +-LsinQ
L

0
f“sinh 8, —k,cosh©,

B

(68)
3
L—‘;cos 0, —k,sinQ

83
L—I; cosh @, +k, sinh O

and from Eq. (68) one obtains:

tan@, = tanhB,, (69)
As the frequency equation for the dynamical
problem, such that (Gbadeyan and Oni, 1995).
B,=3.527,0,=7.0690,=10.210 (70)

Using Eq. (68) and (69) in Eq. (64) and (65) one
obtams the displacement response, respectively to a

moving mass and a moving force of simply-elastic ends
Bernoulli-Euler beam on a constant foundation.

Example (ii): For the case when the beam is elastically
supported both at x = 0 and x = L, the conditions are
expressed as:

VH(0,t)-k, VI(0,0)=0=V" (0, V(0,t)

VLD VIL,O=0=V" (L )+, V(LD (71)
Similarly, for normal modes:
VL) -k, VI(L)=0=V"(L)+k,V_ (L)and 72)
V. (0)=k Vi(0) =0 =V (0)+k,V,(0)
which implies that:
V0 -k, V() =0=V"(0)+k,V,(0)and 73)

Vi L=k V(L) =0 =V, (L) +k,V, (L)

Using (72), it can be shown that:
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|:e—“ -k, i|sin 8, +|:k1 +ﬁi|
L L

cosf, —%sinh 0, +k 1 cosh@,

C, =
ki sin®, —ﬁcosen + ﬁ—kl
L L
. 0
sinh B + f“—ker cosh@
74
0 1. [e 7
aEE +k, [sinQ, + E—kzr2
. 0,
cosB —k,rsinh® —?coshGn
TS 0 ’
rlL—;sin 8, +k,r cos8, +|:L‘;+k2r3 }
3
sinh 0, +[r39; +k2i|cosh8n
L
A =rC +randB, =r,C +1, (75)
Where,
4 3
e_2+k1k2 - 2k13en
I = L g - L and
1 84 2 2 64
L_27k1k2 L_:7k1k2
-2k.8,
L
L, = p
fz_klkz

Using (74), the frequency equation for the dynamical
problem is obtained as

tanfQ, = tanhQ, (76)
This 1s similar to (69), hence one has
0,=3927,0,=7.069,0,=10.210 a7

Substituting Eq. (74), (75) and (77) into Eq. (64) and
(65) one obtains the displacement response, respectively
to a moving mass and a moving force of Bernoulli-Euler
beam elastically supported at both ends and resting on a
constant foundation.
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DISCUSSION OF THE ANALYTICAL SOLUTIONS

In studymng undamped system such as this, it is
desirable to examine the phenomenon of resonance.
Equation (65) clearly shows that the Bernoulli-Euler beam
on a constant foundation and traversed by a moving force
reaches a state of resonance whenever:

(78)

while, Eq. (64) shows that the same beam under the action
of a moving mass experiences resonance when

0 ¢
=y =_n (79
Bo=vo="7
Where,
Bn =Y1=N|: - S.;l;] (RZ(H’H)_YC;N Rl(n,n)]:| (80)

From Eq. (79) and (80), it can be shown that:

2
£ pe 'R, (n.n)
Y. |V — uR, (n,n)y——1-"-
or| Va 2(“ o (0,0 V2, 0.68D
A L
Since,
2
£ uc'R, (n,n)
V>V —— nn)—
for all n.

Tt can be deduced from Eq. (81) that, for the same
natural frequency, the critical speed (and the natural
frequency) for the system of Bernoulli-Euler beam
traversed by a moving mass 1s smaller than that of the
same system traversed by a moving force. Thus, for the
same natural frequency of the Bernoulli-Euler beam, the
resonance 1s reached earlier when we consider the moving
mass system than when we consider the moving force
system.

RESULTS AND DISCUSSION

In this study, calculations of practical interest in
dynamics of structures and Engineering design are
presented for all the illustrative examples considered. An
elastic Bernoulli-Euler beam of length 12.192 m has been
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considered. Furthermore, it is assumed that the moving
load travels at the constant velocity of 8.123m/s. Again EI
and M/Lp are chosen to be 6.068 x 10°m’/s* and 0.25,
respectively. The results are as shown on the various
graphs below for the various classes of boundary
conditions considered.

The effect of foundation modulli (K) on the
transverse deflection of the Bemoulli-Euler beam, with
one end simply supported and the other end elastically
supported, in both cases of moving force and moving
mass 15 displayed in Fig. 1 and 2. The graphs show that
the response amplitude of the beam decreases as the
value of the foundation modulli increases. Values of K
between O and 100000 N/m’ are used.

Figures 3 and 4 display the effect of axial force (N) on
the transverse deflection of the beam, simply supported
at one end and elastically supported at the other end, in
both cases of moving force and moving mass,
respectively. The graphs show that an increase in the
value of axial force (N) decreases the deflection of the
beam. Values of N between O and 1million Newtons are
used.

For the purpose of comparison, the displacement
curves of the moving force and moving mass for the
beam, with one end simply supported and the other end
elastically supported, with K = 100000 N/m® and N =
100000 N are illustrated in Fig. 5. Tt can be seen that the
response amplitude of a moving mass is greater than that
of a moving force problem. This result also holds for other
choice of K and N.

It is observed in Table 1 that as the value of the
foundation modulli K increases, the displacement of the
elastic-elastic Bernoulli-Euler beam decreases for both
cases of moving force and moving mass, respectively.
Also, Table 2 shows that as the value of the axial force N
increases, the deflection of the beam, elastically
supported at both ends, decreases for both cases of
moving force and moving mass, respectively.

0.06-
0.044
0.024
g,
of
-0.02-
2
> 0,04
-0.061 —K=0
—K=1000
0084 K =5000
.01 T T r ——— K~ 16000
5 1 15 2 25 3
Time (sec)

Fig. 1: Deflection of moving force for simply-elastically
supported Bernoulli-Euler beam for various values
of K

Comparing the displacement response of the moving
force and moving mass for a Bernoulli-Euler beam
elastically supported at both ends, for fixed values of K
and N, it 1s evident from Table 1 and 2 that the response
amplitude of the moving mass problem is greater than that
of the moving force problem.

0.12+

—K=0
014 ——K=1000
008 " K=5000
T 0.06 —K=10000 ~
= 0.04+
g 002-
= 0
=0.02 4
-0.04 4
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'0-08 T 1 L] 1 T 1 1
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Fig. 2: Displacement of moving masss for smnply-
elastically supported Bermoulli-Euler beam for
various values of K
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Fig. 3: Deflection of moving force for simply-elastically
supported Bernoulli-Euler beam for various values
of N
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Fig. 4: Displacement of moving mass for Simply-

Elastically supported Bernoulli-Euler Beam or
various values of N
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Table 1: The elastic-elastic Bernoulli-Euler beam decreases for both cases of moving force and moving mass

Moving force

Moving mass

S/n T(sec.) K=0 K= 500000 K=1000000 K=0 K= 500000 K=1000000
1 0 0 0 0 0 0 0

2 0.1 -2.64E-04 -2.65E-04 -2.49E-04 -2.64E-04 -2.65E-04 -2.49E-04
3 0.2 -1.95E-03 -1.65E-03 -1.31E-03 -1.94E-03 -1.66E-03 -1.32E-03
4 0.3 -6.48E-03 -4.23E-03 -2.62E-03 -6.47E-03 -4.25E-03 -2.65E-03
5 0.4 -1.52E-02 -7.02E-03 -3.42E-03 -0.01519 -7.07E-03 -3.46E-03
6 0.5 -2.91E-02 -9.08E-03 -4.18E-03 -2.91E-02 -9.17E-03 -4.22E-03
7 0.6 -4.85E-02 -1.05E-02 -5.68E-03 -4.85E-02 -0.01065 -5.72E-03
8 0.7 -7.32E-02 -1.24E-02 -7.49E-03 -7.34E-02 -1.26E-02 -7.54E-03
9 0.8 -0.10257 -1.57E-02 -8.85E-03 -0.10294 -1.58E-02 -8.94E-03
10 0.9 -0.13543 -0.01998 -1.03E-02 -0.13608 -2.01E-02 -1.04E-02
11 1 -0.17075 -0.02452 -1.27E-02 -0.17177 -2.47E-02 -1.28E-02
12 1.1 -0.20789 -2.91E-02 -1.59E-02 -0.20938 -2.94E-02 -1.60E-02
13 1.2 -0.24719 -3.46E-02 -0.01934 -0.24921 -3.50E-02 -1.95E-02
14 1.3 -0.29031 -4.29E-02 -2.36E-02 -0.29291 -0.04319 -2.38E-02
15 14 -0.34076 -5.48E-02 -0.02995 -0.34391 -5.52E-02 -3.02E-02
16 1.5 -0.40414 -7.07E-02 -3.86E-02 -0.40781 -7.12E-02 -3.89E-02
17 1.6 -0.48846 -9.06E-02 -4.94E-02 -0.49259 -9.14E-02 -0.04987
18 1.7 -0.60429 -0.11606 -6.34E-02 -0.60884 -0.11708 -6.40E-02
19 1.8 -0.76501 -0.14995 -0.08252 -0.76998 -0.1512 -0.08316
20 1.9 -0.98702 -0.19568 -0.10796 -0.99254 -0.19722 -0.10882

Table 2:  The value of the axial force N increases, the deflection of the beam, elastically supported at both ends, decreases for both cases of moving force and

MOVing mass

Moving force

Moving mass

S T(sec.) N=0 N=2000000 N=4000000 N=0 N=2000000 N=4000000
1 0 0 0 0 0 0 0
2 0.1 -2.74E-04 -2.73E-04 -2.70E-04 -2 TAE-04 -2, 7T3E-(4 -2.71E-0d
3 0.2 -1.96E-03 -1.90E-03 -1.81E-03 -1.96E-03 -1.90E-03 -1.81E-03
4 0.3 -6.21E-03 -5.71E-03 -5.12E-03 -6.22E-03 -5.72E-03 -5.13E-03
5 0.4 -1.36E-02 -1.17E-02 -9.68E-03 -1.36E-02 -1.17E-02 -9, 73E-03
6 0.5 -2.38E-02 -1.89E-02 -1.43E-02 -2.39E-02 -1.90E-02 -1.44E-02
7 0.6 -3.59E-02 -2.60E-02 -1.79E-02 -0.0361 -2.62E-02 -1.81E-02
8 0.7 -4.84E-02 -3.20E-02 -2.06E-02 -4.88E-02 -3.23E-02 -2.08E-02
9 0.8 -6.01E-02 -3.67E-02 -2.34E-02 -0.0606 -3.71E-02 -2.36E-02
10 0.9 -7T.03E-02 -4.12E-02 -2.77E-02 -T.11E-02 -4.17E-02 -2, T9E-02
11 1 -7.98E-02 -4.73E-02 -3.43E-02 -8.08E-02 -4, TTE-02 -3.46E-02
12 1.1 -9.04E-02 -5.68E-02 -4.33E-02 -9.14E-02 -5.72E-02 -4.36E-02
13 1.2 -0.10462 -7.09E-02 -541E-02 -0.1057 -T.14E-02 -5.45E-02
14 1.3 -0.12591 -9.03E-02 -6.65E-02 -0.127 -9.09E-02 -6.71E-02
15 14 -0.15756 -0.1153 -818E-02 -0.1587 -0.11613 -8.25E-02
16 1.5 -0.20273 -0.14655 -0.1023 -0.20403 -0.14774 -0.10321
17 1.6 -0.26445 -0.18603 -0.13103 -0.20612 -0.18766 -0.13207
18 1.7 -0.34603 -0.23738 -0.17066 -0.34835 -0.23947 -0.17193
19 1.8 -0.45187 -0.30584 -0.22348 -0.45516 -0.30843 -0.22515
20 1.9 -(.58832 -0.39786 -0.29199 -0.59291 -0.40104 -0.29431
003 — Moving force CONCLUSION

0.0254 ""'“'MOV]‘II.g mass

-0.005 T
02

0.8

0.4 0.6
Time (sec.)

12

Fig. 5: Comparisen of moving force and moving mass for
simply-elastically supported Bernoulli-Euler beam
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The problem of the dynamic response to moving
concentrated masses of Bernoulli-Euler beam on constant
elastic foundation has been studied i this work. An
approximate analytical solution is obtained to the
governing 4th order partial differential equation with
variable and singular coefficients. Two illustrative
examples are presented for tlus class of problems
involving non-classical boundary conditions. For both
llustrative examples considered, analytical and numerical
analysis mainly in plotted curves show that as the
foundation medulli and the axial force mcrease, the
response amplitudes of the beam decrease, for fixed axial
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force and foundation modulli, the response amplitude for
the moving mass problem is greater than that of the
moving force problem and for the same natural frequency,
the critical speed for the moving mass problem 1s smaller
than that for the moving force problem and so resonance
is reached earlier in the moving mass problem.

Finally, this work has suggested valuable method of
approximate analytical solution for this class of problems
for all variants of both non-classical and combination of
classical and non-classical boundary conditions.
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