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Abstract: We give a general case of the geometries D; ; and D, ,, it 1s a point-line geometry of type D, ., (F),
n>5. We present a diagram and a complete definition of all varieties of such geometry to be 1somorphic to the
classical polar space of type 2" (2n, F). This study includes a characterization of the geometry and the most
important properties will be investigated; we prove that the geometry is a strong parapolar with diameter ecual

n-1.
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INTRODUCTION

Recently, m Abdelsalam (2007a, b) the pomt-line
geometries of types D, ; and D, , are characterized,
respectively. Zayda presented a building and a complete
definition of such geometries and the most important
properties of them were investigated. The class of the
geometries D, ,(n < 5),D,,(n=6)and D, , (n = 7) had
been studied and characterized as a point-line geometries
(Abdelsalam, 2002.). The Half-spin geometry D. , (F) was
characterized as a group isomorphic to £ (10) by Cohen
and Cooperstein  (2003). Mohammed and zayda
abdelsalam also were able to give the general case for the
class of the geometries D, ,(n=5),D,;(n=6)and D_,
(n > 7) by presenting a theorem which characterized, by
axioms on points and lines, the geometry D, where,
k> 2andn > k + 3 and all properties of such geometry
investigated (Abdelsalam, 2002). In this study, we give a
general case of the 2 geometries D, ;and D, ..

First we present some definition of terminology’s that
will be used For most of the following definitions
(Cohen, 1984; Buekenhout and Shult, 1974).

Given a set I, a geometry I" over I 1s an ordered triple
I' = (X, ., D), where X 1s a set, D 1s a partition {X;} of X
mdexed by I, X are called components and . is a
symmetric and reflexive relation on X called incidence
relation such that:

x.y 1mplies that either x and v belong to distinct
components of the partition of X or x = y. Elements of X
are called objects of the geometry and the objects within
one component X of the partition are called the objects of
type 1. The subscripts that index the components are
called types. The obvious mapping t: -1, which takes
each object to the index of the component of the partition
containing it 13 called the type map T.
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A pont-line geometry (P, L) 1s simply a geometry for
which |I| = 2, one of the 2 types 1s called points; i this
notation, the points are the members of P and the other
type 1s called lines. Lines are the members of L. If peP and
1e1., then p*1 if and only if pel. In point-line geometry
(P, L), we say that 2 points of P are collinear if and only if
they are incident with a common line (We use the symbol
~ for collinear).

The singular rank of a space I' is the maximal number
n (possibly o) for which there exist a chain of distinct
subspaces @=*X,cX,c... <X such that X 15 singular for
each 1, X;#X,, 1# j. For example rank (¢) = -1, rank ({p}) =
0 where p 1s a pomnt and rank (1) = 1 where | a line.

x* means the set of all pomnts in P collinear with x,
including x itself.

A subspace of a point-line geometry I' = (P, L) is a
subset Xc P such that any line which has at least 2 of its
incident points in X has all of its incident points in X. <X>
means the intersection over all subspaces containing X,
where XcP. Lines incident with more than 2 points are
called thick lines, those incident with exactly 2 points
are called thin lines. ITn a point-line geometry I'= (P,
L), apath of length n 1s a sequence of n+l (x,, x,,.., X)
where, (x, x.,) are collinear, x, 1s called the mitial
pomnt and x, i1s called the end pomt. A geodesic from
a point x to a pointy is a path of mimmal possible
length with 1mtial pomt x and end point y. We denote
this length by dr (x, v), the length of the geodesic
from x to y is called the distance betweenx andy. The
diameter of the geometry is the maximal distance of
points.

A geometry I' is called connected if and only if for
any 2 of its points there is a path them. A subset X of P
is said to be convex if X contains all points of all
geodesics connecting 2 points of X.
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A polar space is a point-line geometry I' = (P, L)
satisfying the Buekenhout-Shult axiom:

For each point-line pair (p, 1) with p not incident with
1, p 1s collinear with one or all points of 1, that 1s |p*nl| =1
or else p*ol. Clearly this axiom is equivalent to saying that
P 1s a geometric hyperplane of T' for every point peP.

A point-line geometry I' = (P, L) is called a projective
plane if and only if it satisfies the following conditions
(Abdelsalam, 2007b):

I'is a linear space; every 2 distinct points x, y in P lie
exactly on one line.

Every 2 lines intersect in one point.

There are 4 points no 3 of them are on a line.

A pomt-line geometry I" = (P, L) 15 called a projective
space if the following conditions are satisfied:

Every 2 points lie exactly on one line.

If 1, Lare 2 lines 1,nl, # &, then {1,, L is a projective
plane. ({1, 1, means the smallest subspace of T’
containing 1, and 1,).

A pomt-line geometry I = (P, L) 1s called a parapolar
space if and only if it satisfies the following properties:

I'is a connected gamma space.

For every line 1; 1*1s not a smgular subspace.

For every pair of non-collinear points x, v, X My* is
either empty, a single point, or a non-degenerate
polar space of rank at least 2.

If x, y are distinct points in P and if [x*ny*| =1, then
(%, v) is called a special pair and if x*ny* is a polar space,
then (x, y) 1s called a polar pair (or a symplectic pair). A
parapolar space 1s called a strong parapolar space if it has
no special pairs.

In Fig. 1, Consider the classical polar space A = QF
(2n, F) that comes from a vector space of dimension 2n
over a finmite field F = GF (k) with a symmetric hyperbolic

M,

Fig. 1: Censtruction of D, , (F)
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bilinear form. The 2 classes M,, M, consist of maximal
totally  isotropic subspaces.
subspaces fall in the same class if their intersection is of

n-dimensional Two-n-
odd dimension.

The geometry of type D, ., (F) is the point-line
geometry (P, L), whose set of points P is corresponding to
the class S, that 1s: the collection of all totally isotropic
(n-2)-dimensional subspaces of the vector space V and
whose lines are corresponding to the collection of all n-
dimensional subspaces of the vector space V that are fall
1n the class M,. A point C 18 incident to a line B 1if and
only if CcB as a subspaces of V.

To define the collinearity, let C, and C, be two point
(the points are the T.T (n-2)-spaces), then C, is collinear to
C, if and only if the intersection of C, and C, is a T.T (n-4)-
dimensional space. This intersection in addition to the
complement of C, and C, must form a T.T n-dimensional
space. The elements of the class M, are geometries of
type A, . (F).

The symplecta of D, ., (F) are the Grassmarmians of
type A, ; (F) that are corresponding to the collection of TI
(n-3)-dimensional spaces.

Notation: Let the map ¥: P~ V defined above, 1.e., ¥ (p) 1s
the T.I. (n-2)-dimensional subspace corresponding to the
point p. We will use ¥ for the rest of the geometry; for
example ¥ (D, ;) is the T.I. (n-4)-dimensional subspace
corresponding to a geometry of type D, ; and P (D; ;) 1s
the T.I. (n-5)-dimensional subspace corresponding to a
geometry of type D, ;. The inverse map P will be used
for the inverse; for example W' (C) is the point
corresponding to the T.I. (n-2)-dimensional subspace C.

OLD RESULTS

Recently, 2 point-line geometries of types D, ; and
D; , has been characterized (Abdelsalam, 2007a, b) The
building of the geometries has diagrams (Fig. 2):

M,
D, A, p L
5, 3, 8,
Ay
Polar space A M, D,, (F)
D, D, A, p L

Polar space A

Fig. 2: The building of the geometries
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and it has been proved that the geometries are strong
parapolar with diameters equal 4 and 5, respectively by
the following theorems:

Theorem: LetI' = (P, L) be a point-line geometry of type
D, .., then the following are satisfied:

T" 1s a strong parapolar space of diameter 4.

If (p, 8) is a pair of non-incident point-symplecton,
then rank (p* N 8)=-1, 0, 2.

If 5, and S, are 2 different symplecta of D ; ; then
rank (3,1 S;)=-1, 0.

Proof: (Abdelsalam, 2007a)

Theorem: Let I' = (P, I.) be a point-line geometry of type
D, 4. then the following are satisfied:

I'is a strong parapolar space of diameter 5.

If (p, S) 1s a pair of non-incident pomt-symplector,
then rank (p* N 8)=-1, 0, 2.

If 8, and S, are 2 different symplecta of D, ,, then
rank (3,1 3;) = -1, 0.

Proof: (Abdelsalam, 2007b).
THE MAIN RESULT

The following Theorems represent the first part of the
main result in which we prove that the diameter of the
geometry D, ., is equal n-1 and the geometry is a strong
parapolar. The second part of the result, will be proved
later, is to show that the relation between a point and a
symplecton is either empty a point or a plane and the
relation between 2 different symplecta is either empty or
a point.

Theorem: letI" = (P, L) be the pomt-line geometry of type
D, .. (F), then the following conditions are satisfied:

*  The diameter of I equals n-1.
¢ [I'is strong geometry.

Proof: We prove that for any 2 points p and g, max
{d(p. @ p. q are points} =n-1. Let ¥ (p) = <x,, X;,....X,,>,
T (q) = <Y, ¥ ¥no> be the corresponding of p and q,
respectively. Then ¥ (p)n ¥ (q) has the following cases:

P (P (g =TI (n-4) dimensional space, then ¥
¥ (@ = <u, u,..,u> where u, = %, = vy,
U =X = Yool = Xy = ¥yp and

' NPg) =¥ (g
¥ @=¥
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Then the subspace <x,, X, W, W,..., L, ¥, ¥, form
the TI n-space which corresponds to the line incident
to the points p and g Then p is collinear to q and

dip,g=1.

¥ (5) 1 ¥ (q) = (n-3) space, then ¥ (p) N ¥ (q) = <u,
U,,....10, 5= which means that p is not collinear to . If
x N¥{(q =P (q), then <y,, u;, u,,...,u 5, x> forms a
TT (n-1) space and contained in a maximal TT n-space,
say <y, W, ..., 0,4, X, U= Then we can find many
points collinear to both p and q, for this purpose
select a point 1 such that ¥ (r) = <u, x,, y,, u,
U, s>, then ¥ (0P (p) = (n-4)-space and P
(r)N¥ (q) = (n-4)-space. Thenr is collinear to both p
and ¢, sod (p, q) =2.

Atthe following cases: ¥ (p)n'¥P () = (n-5) space, P
(pnY¥ (@) = (n-6) space,...,' ¥ (p)n¥ (q) = 1-space we
get d (p, q)rn-2.

£ (p)n¥ (q) = O-space, ;¥ ()= P () and ;' P
(@=P{(QQ=#jandi,j=1,2,.,n2) then we have d
(p, rn-2. IEFP (p)n¥P (q) = O-space, then we can find
a geodesic of n points beginning with the point p and
ending with the point q. To obtamn such a geodesic
let P (q) be contained in a maximal TT n-space < y,,
Vare-s¥azs U, ¥ and let r; be the first point that is
collinear to p corresponds to ¥ (1) = <y, v, X5,...,.%,,>,
the second point that is collinear to r, corresponds to
W (1) =<, ¥, Vi, ¥o Xg-.Xy o> and we repeat the same
process to get the following point at the geodesic
by replacing the 2 vectors x,; and x, by y,and y ,to
get the following point at the geodesic which is
T () = <u, v, Y ¥ Yo e X5..0X~ finally we
reach to the last point before q at the geodesic that is
W (1) =<0V, Vi, V2 ¥i» Voo n¥Vas” and its collinear to
the end point q. Then we get a sequence of n point of
a geodesic that are p, 1,, 15, 1y,...,1, 5, ¢ which means
that d (p, g) = n-1, so, we have max {d (p, q): p, q are
2 pomts} = n-1.

To prove that the geometry has no special points, let
pand q be 2 any point in the geometry and ¥ (q) = <y,
Voo s¥urs P (P) = <X, X,,...,X,,> be correspondence of g
and p, respectively. In part 1 of this theorem, we
discussed all cases of ¥ (p)n'P (q) and then at all cases of
d (p, q) except d (p, q) = 2 we find that (p, q) is not a
special pair.

It d (p, q) = 2, we prove that (p, q) 1s not also a special
pair by showing that |p*ng*|=1. If ¥ (p)n¥ {(q) = (n-3)-
space we can find many points such as r, and r, where
T (1) =<0, % ¥, Uy, U U and (1) = <0, X, v, U, Uy,
Uy, s> Then W (r)n¥ (p) = (n-4)-space, ¥ (r)n P
() = (n-4)rspace, ¥ ()N (p) = (n-4)-space and ¥ (r,)n ¥
{(q) = (n-4)-space. Then |p*nq*|>1, so (p, q) is not a special
pair which mean that D, ., is a strong geometry.
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Theorem: D, ,, (F) is a parapolar geometry.

Proof: The geometry D, ,, is connected, 1 of Theorem 3
to show that D, ., is a gamma space, let (p, 1) be a non-
incidence pair of a point p and a line 1 such that ¥ (p) =
<Ky, Xy X ANd P (1) = <1, 1,,...,u,>. To be specified we
must identify 2 points r ands that define the line | say,
P (1) = <u, w, u,...u,> and W (s) = <uy, Uy Uyp W,
1> Then the intersection ¥ (p)n¥ (1) has 3 cases:

ItP (p)n?P (1) = O-space or 1-space,...or (n-5)-space,
then there is no any (n-4)-space contained in ¥ (1)
and intersect ¥ (p) in (n-4)-space which means that
pnl=e.

T (p)n? (1) = (n-4)-space = <, U,,...,, 7>, Where x, =
Uy U, = X5 Thenx,*, x, NP (1) = (n-1)-space = <u,,
Uy, U > Since, P (NcP (1D, P (p)n¥P (1) = <,
Uy, 0> and <X, X, W,,...,14,,> is a T n-space, p~r
mean while <X, x,, Us, U,,...,L, 5, 1> is not TT n-space,
then p is not collinear to 8. Then p* N 1= {r}.

T (p)n? (1) = (n-3)-space = <, U,,...,0,.>, X, 1 P (1)
= (n-1)-space = <u,, W,,...,1, ;> Then there is a unique
point, say, t incident to the line 1 such that ¥ (t) =
Uy, Uyl Uy > Since, ¥ (0N (p) = (n-4)-
space and <x,, u,...u> forms a TI n-space, t is
collinear to pi.e., p*nl = {t}. Then according to the a
above cases D, ., is gamma space. The remaining
part of the proof is to show that for any 2 non-
collinear points p and q, p* N q* is either empty, a
single point, or a non-degenerate polar space of rank
at least 2. By Theorems 3 and 2 we showed that for
any pair of non-collinear points pand g, d (p, @) =1,
3, or ...,or n-1 which means that p*n q* is empty. For
d (p, q) = 2, we proved that p*ng* is a non degenerate
pelar space and then for any line 1, I* is not singular
subspace. Then D, 1s a parapolar geometry.

The following theorems presents the second part of
the result as a general case of Theorems 2.1 and 2.2 in
(Abdelsalam, 2007a, b).

Theorem: Let 3, and S, be 2 distinct symplecta in the
geometry D, ;. Thenrank (S5, 1 S;) =-1 or 0.

Proof: ¥ (5,) = <x,, %,,... %> and ¥ (S,) = <y, ¥5,...¥ 5>
are corresponding (n-3)-spaces to the symplecta S, and
3., respectively. Then we have the following cases for ¥
(SN ¥ (S,

TP (3,) NP (8,) = (n-4)-space, i.e., P (5) NP (S,) =
<, Ug,enn,ll >, Where 0, = X, = v, U, = X; = ¥y,... and
Uy, = Xog = Voo then if x 0 (S,) = ¥ (S,), then the
point r such that ¥ () = <x.5, Vo5 W, W...,U>
is contained in S, and S, which means that rank
(8,n3)=0.
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IfY (5) N P (5,) = O-space, 1-space,..., or (n-3)-space,
then there 1s no any TI (n-2)-space contaimng ¥ (3,)
and P (S,), 1e., 3, N 3, = @ and rank (S, N 3,) = -1.
Then rank (S, N S,) =-1 or 0.

Theorem: Let (p, S) be a non-incidence pair of a point p
and a symplecton S in D, ,. Then rank (p*nS) = -1, O or 2.
Proof: Let ¥ (p) = <x,, X3.... %27, T (3) = <y, V..,V be
the correspondence of the point p and the symplecton
3, respectively. Then there 1s the following cases for

T () (S)
+ P pn? (S)=(n-D-space, ¥ (p)n¥ (3) =<u, u,,...,
U, > where U =X, =y, U, = X, = Yy and Uy, = X
=y, now if y, - NP (p) =¥ (p), then the subspace
Yo Xngs Xpze Ups Use.,Up > 18 contained m a TI
n-space <1, Vs, X5 Xz U, Uge U™, Then we can
find a point r such that ¥ (r) = <, y,5, W, Uy, U, >,
Since, P (5) < ¥ (1), r 1s a point in the symplecton 3
and smece ¥ (1) NP (p) = (n-4)-space, r 15 collinear
to the point p. Then p*n S is a point, i.e., rank
(prnsS)=0.

T (¥ (S) = (n-5)-space, ¥ (p)nT (3) = <u,, u,,...,
U, > whereu, =x, =y, =X, = ¥,,... and Uy s = X, =
Vos Ly n¥ (p) = ¥ (p) and y,. N (p) = ¥ (p), the
we find 3 points 1, r; and 1, such that ¥ (r,) = <y,
Vot Kot Upp UppUps> W (1) = < Yoo Yoo X U,
Ug,ooUys™ and W (1) = <Yose Yoss Xozs Us UneosUns™
Since, followmg: ¥ (S)c?P ), P (S)c¥ (1;) and
Y (S)c¥ (r;), then r, r, and r, are points in the
symplecton S and since:

Y (r)n¥ (p) = (n-4)-space.
¥ (r)n¥ (p) = (n-4)-space.
Y (1 )Nn? (p) = (n-4)-space.

Then each of point of r,, 1, and 15 13 collinear to the
pomt p. Then p* N S 1s a plane, 1.e., rank (p* N 3) = 2.

If ¥ (p)n¥ (S) = O-space or 1-space or,...,or (n-5)-
space, then any selected (n-2)-space contaming ¥ (S)
must intersect ¥ (p) in O-space, 1-space or,...,or m (n-5)-
space, respectively which means that no points in S
collinear to p, 1.e., p' 3 = @. Then for the above 3 cases
we have rank (p'n3)=-1, 0or 2.

Finally, Theorem 3, 4, 5 and & form a characterization
for the geometry as follow:

Theorem: LetI' = (P, L) be a point-line geometry of type
D, .. (F), then the following are satisfied:

¢ I'is astrong parapolar space of diameter n-1.

If (p, S) 13 a pair of non-incident pomt-symplecton,
then rank (p* N S)=-1,0, 2.
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« If S, and S, are 2 different symplecta of D, ., then
rank (S, N S,)=-1, 0.

Proof: Theorem 3, 4, 5 and 6.
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