On Properties of the Geometry $D_{n,n-2}$

Abdelsalam Abou Zayda Department of Mathematics, Alaqsa University, Gaza, Palestine

Abstract: We give a general case of the geometries $D_{5,3}$ and $D_{6,4}$, it is a point-line geometry of type $D_{n,n-2}$ (F), $n \ge 5$. We present a diagram and a complete definition of all varieties of such geometry to be isomorphic to the classical polar space of type Ω^+ (2n, F). This study includes a characterization of the geometry and the most important properties will be investigated; we prove that the geometry is a strong parapolar with diameter equal n-1.

Key words: Parapolar space, classical polar space, strong geometry, D_{n, n-2}

INTRODUCTION

Recently, in Abdelsalam (2007a, b) the point-line geometries of types D_{5, 3} and D_{6, 4} are characterized, respectively. Zayda presented a building and a complete definition of such geometries and the most important properties of them were investigated. The class of the geometries $D_{n,2}$ ($n \le 5$), $D_{n,3}$ ($n \ge 6$) and $D_{n,4}$ ($n \ge 7$) had been studied and characterized as a point-line geometries (Abdelsalam, 2002.). The Half-spin geometry D_{5,5} (F) was characterized as a group isomorphic to Ω^+ (10) by Cohen and Cooperstein (2003). Mohammed and zayda abdelsalam also were able to give the general case for the class of the geometries $D_{n,2}$ (n = 5), $D_{n,3}$ (n = 6) and $D_{n,4}$ $(n \ge 7)$ by presenting a theorem which characterized, by axioms on points and lines, the geometry D_{nk} where, $k \ge 2$ and $n \ge k+3$ and all properties of such geometry investigated (Abdelsalam, 2002). In this study, we give a general case of the 2 geometries D_{5,3} and D_{6,4}.

First we present some definition of terminology's that will be used. For most of the following definitions (Cohen, 1984; Buekenhout and Shult, 1974).

Given a set I, a geometry Γ over I is an ordered triple $\Gamma = (X, *, D)$, where X is a set, D is a partition $\{X_i\}$ of X indexed by I, X_i are called components and * is a symmetric and reflexive relation on X called incidence relation such that:

 x_iy implies that either x and y belong to distinct components of the partition of X or x=y. Elements of X are called objects of the geometry and the objects within one component X_i of the partition are called the objects of type i. The subscripts that index the components are called types. The obvious mapping τ : X-I, which takes each object to the index of the component of the partition containing it is called the type map τ .

A point-line geometry (P, L) is simply a geometry for which |I| = 2, one of the 2 types is called points; in this notation, the points are the members of P and the other type is called lines. Lines are the members of L. If $p \in P$ and $l \in L$, then p*1 if and only if $p \in I$. In point-line geometry (P, L), we say that 2 points of P are collinear if and only if they are incident with a common line (We use the symbol \sim for collinear).

The singular rank of a space Γ is the maximal number n (possibly ∞) for which there exist a chain of distinct subspaces $\phi \neq X_0 \subset X_1 \subset ... \subset X_n$ such that X_i is singular for each $i, X_i \neq X_j, i \neq j$. For example rank $(\phi) = -1$, rank $(\{p\}) = 0$ where p is a point and rank (1) = 1 where 1 a line.

 x^{\perp} means the set of all points in P collinear with x, including x itself.

A subspace of a point-line geometry $\Gamma = (P, L)$ is a subset $X \subseteq P$ such that any line which has at least 2 of its incident points in X has all of its incident points in X. <X> means the intersection over all subspaces containing X, where X⊆P. Lines incident with more than 2 points are called thick lines, those incident with exactly 2 points are called thin lines. In a point-line geometry $\Gamma = (P,$ L), a path of length n is a sequence of n+1 ($x_0, x_1, ..., x_n$) where, (x_i, x_{i+1}) are collinear, x_0 is called the initial point and x_n is called the end point. A geodesic from a point x to a point y is a path of minimal possible length with initial point x and end point y. We denote this length by $d_T(x, y)$, the length of the geodesic from x to y is called the distance between x and y. The diameter of the geometry is the maximal distance of points.

A geometry Γ is called connected if and only if for any 2 of its points there is a path them. A subset X of P is said to be convex if X contains all points of all geodesics connecting 2 points of X.

A polar space is a point-line geometry Γ = (P, L) satisfying the Buekenhout-Shult axiom:

For each point-line pair (p, l) with p not incident with l, p is collinear with one or all points of l, that is $|p \cap l| = 1$ or else $p \cap l$. Clearly this axiom is equivalent to saying that p is a geometric hyperplane of Γ for every point $p \in P$.

A point-line geometry $\Gamma = (P, L)$ is called a projective plane if and only if it satisfies the following conditions (Abdelsalam, 2007b):

- Γ is a linear space; every 2 distinct points x, y in P lie exactly on one line.
- Every 2 lines intersect in one point.
- There are 4 points no 3 of them are on a line.

A point-line geometry $\Gamma = (P, L)$ is called a projective space if the following conditions are satisfied:

- Every 2 points lie exactly on one line.
- If l₁, l₂ are 2 lines l₁∩l₂ ≠ Ø, then ⟨l₁, l₂⟩ is a projective plane. (⟨l₁, l₂⟩ means the smallest subspace of Γ containing l₁ and l₂).

A point-line geometry $\Gamma = (P, L)$ is called a parapolar space if and only if it satisfies the following properties:

- Γ is a connected gamma space.
- For every line 1; 1 is not a singular subspace.
- For every pair of non-collinear points x, y; x⁺∩y⁺ is either empty, a single point, or a non-degenerate polar space of rank at least 2.

If x, y are distinct points in P and if $|x \cap y^+| = 1$, then (x, y) is called a special pair and if $x \cap y^+$ is a polar space, then (x, y) is called a polar pair (or a symplectic pair). A parapolar space is called a strong parapolar space if it has no special pairs.

In Fig. 1, Consider the classical polar space $\Delta = \Omega^+$ (2n, F) that comes from a vector space of dimension 2n over a finite field F = GF (k) with a symmetric hyperbolic

Fig. 1: Construction of $D_{n, n-2}(F)$

bilinear form. The 2 classes M_1 , M_2 consist of maximal totally isotropic n-dimensional subspaces. Two-n-subspaces fall in the same class if their intersection is of odd dimension.

The geometry of type $D_{n, n-2}$ (F) is the point-line geometry (P, L), whose set of points P is corresponding to the class S_{n-2} that is: the collection of all totally isotropic (n-2)-dimensional subspaces of the vector space V and whose lines are corresponding to the collection of all n-dimensional subspaces of the vector space V that are fall in the class M_1 . A point C is incident to a line B if and only if $C \subset B$ as a subspaces of V.

To define the collinearity, let C_1 and C_2 be two point (the points are the T.I (n-2)-spaces), then C_1 is collinear to C_2 if and only if the intersection of C_1 and C_2 is a T.I (n-4)-dimensional space. This intersection in addition to the complement of C_1 and C_2 must form a T.I n-dimensional space. The elements of the class M_2 are geometries of type $A_{n-1,\,n-2}$ (F).

The symplecta of $D_{n,n\cdot 2}$ (F) are the Grassmannians of type $A_{3,\,2}$ (F) that are corresponding to the collection of TI (n-3)-dimensional spaces.

Notation: Let the map $\Psi\colon P^{\to} V$ defined above, i.e., Ψ (p) is the T.I. (n-2)-dimensional subspace corresponding to the point p. We will use Ψ for the rest of the geometry; for example Ψ (D_{4, 2}) is the T.I. (n-4)-dimensional subspace corresponding to a geometry of type D_{4, 2} and Ψ (D_{5, 3}) is the T.I. (n-5)-dimensional subspace corresponding to a geometry of type D_{5, 3}. The inverse map Ψ^{-1} will be used for the inverse; for example Ψ^{-1} (C) is the point corresponding to the T.I. (n-2)-dimensional subspace C.

OLD RESULTS

Recently, 2 point-line geometries of types $D_{5,3}$ and $D_{6,4}$ has been characterized (Abdelsalam, 2007a, b) The building of the geometries has diagrams (Fig. 2):

Fig. 2: The building of the geometries

and it has been proved that the geometries are strong parapolar with diameters equal 4 and 5, respectively by the following theorems:

Theorem: Let $\Gamma = (P, L)$ be a point-line geometry of type $D_{5,3}$, then the following are satisfied:

- Γ is a strong parapolar space of diameter 4.
- If (p, S) is a pair of non-incident point-symplecton, then rank (p⁺ ∩ S) = -1, 0, 2.
- If S_1 and S_2 are 2 different symplecta of D $_{5,3}$ then rank $(S_1 \cap S_2) = -1, 0$.

Proof: (Abdelsalam, 2007a)

Theorem: Let $\Gamma = (P, L)$ be a point-line geometry of type $D_{6,4}$, then the following are satisfied:

- Γ is a strong parapolar space of diameter 5.
- If (p, S) is a pair of non-incident point-symplecton, then rank (p⁺ ∩ S) = -1, 0, 2.
- If S₁ and S₂ are 2 different symplecta of D₅, ₃, then rank (S₁∩ S₂) = -1, 0.

Proof: (Abdelsalam, 2007b).

THE MAIN RESULT

The following Theorems represent the first part of the main result in which we prove that the diameter of the geometry $D_{n, n-2}$ is equal n-1 and the geometry is a strong parapolar. The second part of the result, will be proved later, is to show that the relation between a point and a symplecton is either empty a point or a plane and the relation between 2 different symplecta is either empty or a point.

Theorem: let $\Gamma = (P, L)$ be the point-line geometry of type $D_{n,n-2}(F)$, then the following conditions are satisfied:

- The diameter of Γ equals n-1.
- Γ is strong geometry.

Proof: We prove that for any 2 points p and q, max $\{d(p,q): p, q \text{ are points}\} = n-1$. Let $\Psi(p) = \langle x_1, x_2,...,x_{n-2} \rangle$, $\Psi(q) = \langle y_1, y_2,...,y_{n-2} \rangle$ be the corresponding of p and q, respectively. Then $\Psi(p) \cap \Psi(q)$ has the following cases:

• Ψ (p) \cap Ψ (q) = TI (n-4) dimensional space, then Ψ (p) \cap Ψ (q) = $\langle u_1, u_2, ..., u_{n-4} \rangle$ where $u_1 = x_3 = y_3$, $u_2 = x_4 = y_4, ..., u_{n-4} = x_{n-2} = y_{n-2}$ and

$$x_1^{\perp} \cap \Psi (q) = \Psi (q)$$

 $x_2^{\perp} \cap \Psi (q) = \Psi (q)$

Then the subspace $\langle x_1, x_2, u_1, u_2,...,u_{n-4}, y_1, y_2 \rangle$ form the TI n-space which corresponds to the line incident to the points p and q. Then p is collinear to q and d (p, q) = 1.

- Ψ (p) ∩ Ψ (q) = (n-3) space, then Ψ (p) ∩ Ψ (q) = <u₁, u₂,...,u_{n.3}> which means that p is not collinear to q. If x₁⁺ ∩ Ψ (q) = Ψ (q), then <y₁, u₁, u₂,...,u_{n.3}, x₁> forms a TI (n-1) space and contained in a maximal TI n-space, say <y₁, u₁, u₂,...,u_{n.3}, x₁, u>. Then we can find many points collinear to both p and q, for this purpose select a point r such that Ψ (r) = <u, x₁, y₁, u₁, u₂,...,u_{n.5}>, then Ψ (r) ∩ Ψ (p) = (n-4)-space and Ψ (r) ∩ Ψ (q) = (n-4)-space. Then r is collinear to both p and q, so d (p, q) = 2.
- At the following cases: Ψ (p) $\cap \Psi$ (q) = (n-5) space, Ψ (p) $\cap \Psi$ (q) = (n-6) space,..., Ψ (p) $\cap \Psi$ (q) = 1-space we get d (p, q) \cap n-2.
- If Ψ (p) $\cap \Psi$ (q) = 0-space, $x_i \cap \Psi$ (q) = Ψ (q) and $x_i \cap \Psi$ $(q) = \Psi(q)$ (i $\neq j$ and i, j = 1, 2,..., n-2), then we have d $(p, q) \cap n-2$. If $\Psi(p) \cap \Psi(q) = 0$ -space, then we can find a geodesic of n points beginning with the point p and ending with the point q. To obtain such a geodesic let Ψ (q) be contained in a maximal TI n-space $\leq y_1$, $y_2,...,y_{n-2}$, u, v> and let r_1 be the first point that is collinear to p corresponds to $\Psi(\mathbf{r}_1) = \langle \mathbf{u}, \mathbf{v}, \mathbf{x}_3, \dots, \mathbf{x}_{n-2} \rangle$, the second point that is collinear to r₁ corresponds to Ψ (r₂) = < u, v, y₁, y₂, x₅,...,x_{n-2}> and we repeat the same process to get the following point at the geodesic by replacing the 2 vectors x_5 and x_6 by y_3 and y_4 to get the following point at the geodesic which is Ψ (r₃) = <u, v, y₁, y₂, y₃, y₄, x₇,...,x_{n-2}> finally we reach to the last point before q at the geodesic that is Ψ (r_{n-2}) = <u, v, y₁, y₂, y₃, y₄,...,y_{n-4}> and its collinear to the end point q. Then we get a sequence of n point of a geodesic that are p, r₁, r₂, r₃,...,r_{n-2}, q which means that d(p, q) = n-1, so, we have max $\{d(p, q): p, q \text{ are } \}$ 2 points = n-1.

To prove that the geometry has no special points, let p and q be 2 any point in the geometry and Ψ (q) = $\langle y_1, y_2, ..., y_{n-2} \rangle$, Ψ (p) = $\langle x_1, x_2, ..., x_{n-2} \rangle$ be correspondence of q and p, respectively. In part 1 of this theorem, we discussed all cases of Ψ (p) $\cap\Psi$ (q) and then at all cases of d (p, q) except d (p, q) = 2 we find that (p, q) is not a special pair.

If d(p,q)=2, we prove that (p,q) is not also a special pair by showing that $|p^+\cap q^+|>1$. If $\Psi(p)\cap \Psi(q)=(n-3)$ -space we can find many points such as r_1 and r_2 where $\Psi(r_1)=<u,x_1,y_1,u_3,u_4,...,u_{n-3}>$ and $\Psi(r_2)=<u,x_1,y_1,u_1,u_2,u_3,u_4,...,u_{n-3}>$. Then $\Psi(r_1)\cap \Psi(p)=(n-4)$ -space, $\Psi(r_1)\cap \Psi(q)=(n-4)$ -space, $\Psi(r_2)\cap \Psi(p)=(n-4)$ -space and $\Psi(r_2)\cap \Psi(q)=(n-4)$ -space. Then $|p^+\cap q^+|>1$, so (p,q) is not a special pair which mean that $D_{n,n-2}$ is a strong geometry.

Theorem: $D_{n, n-2}(F)$ is a parapolar geometry.

Proof: The geometry $D_{n, n\cdot 2}$ is connected, 1 of Theorem 3 to show that $D_{n, n\cdot 2}$ is a gamma space, let (p, 1) be a non-incidence pair of a point p and a line 1 such that Ψ $(p) = \langle x_1, x_2, ..., x_{n\cdot 2} \rangle$ and Ψ $(1) = \langle u_1, u_2, ..., u_n \rangle$. To be specified we must identify 2 points r and s that define the line 1 say, Ψ $(r) = \langle u_1, u_2, u_3, ..., u_{n\cdot 2} \rangle$ and Ψ $(s) = \langle u_3, u_4, ..., u_{n\cdot 2}, u_{n\cdot 1}, u_n \rangle$. Then the intersection Ψ $(p) \cap \Psi$ (1) has 3 cases:

- If Ψ (p) $\cap \Psi$ (l) = 0-space or 1-space,...or (n-5)-space, then there is no any (n-4)-space contained in Ψ (l) and intersect Ψ (p) in (n-4)-space which means that $p^{\downarrow} \cap 1 = \varphi$.
- Ψ (p) $\cap \Psi$ (l) = (n-4)-space = <u₃, u₄,...,u_{n-2}>, where x₃ = u_{3,...,}u_{n-2} = x_{n-2}. Then x₂+, x₁+ $\cap \Psi$ (l) = (n-1)-space = <u₁, u₂...,u_{n-2}, u_{n-1}>. Since, Ψ (r) $\subseteq \Psi$ (l), Ψ (p) $\cap \Psi$ (r) = <u₃, u₄,...,u_{n-2}> and <x₁, x₂, u₁,...,u_{n-2}> is a TI n-space, p \sim r mean while <x₁, x₂, u₃, u₄,...,u_{n-1}, u_n> is not TI n-space, then p is not collinear to s. Then p $^+ \cap 1 = \{r\}$.
- Ψ (p) $\cap \Psi$ (l) = (n-3)-space = $\langle u_2, u_3, ..., u_{n-2} \rangle$, $x_1 \vdash \cap \Psi$ (l) = (n-1)-space = $\langle u_1, u_2, ..., u_{n-1} \rangle$. Then there is a unique point, say, t incident to the line 1 such that Ψ (t) = $\langle u_3, u_4,...,u_{n-2}, u_{n-1}, u_n \rangle$. Since, $\Psi(t) \cap \Psi(p) = (n-4)$ space and <x1, u2,...,un> forms a TI n-space, t is collinear to p i.e., $p^+nl = \{t\}$. Then according to the a above cases D_{n, n-2} is gamma space. The remaining part of the proof is to show that for any 2 noncollinear points p and q, $p^{ \scriptscriptstyle \perp} \cap q^{ \scriptscriptstyle \perp}$ is either empty, a single point, or a non-degenerate polar space of rank at least 2. By Theorems 3 and 2 we showed that for any pair of non-collinear points p and q, d(p, q) = 1, 3, or ...,or n-1 which means that p'n q' is empty. For d(p, q) = 2, we proved that p^+nq^+ is a non degenerate polar space and then for any line l, l' is not singular subspace. Then $D_{n,n-2}$ is a parapolar geometry.

The following theorems presents the second part of the result as a general case of Theorems 2.1 and 2.2 in (Abdelsalam, 2007a, b).

Theorem: Let S_1 and S_2 be 2 distinct symplecta in the geometry $D_{n,n-2}$. Then rank $(S_1 \cap S_2) = -1$ or 0.

Proof: Ψ (S₁) = <x₁, x₂,...,x_{n-3}> and Ψ (S₂) = <y₁, y₂,...,y_{n-3}> are corresponding (n-3)-spaces to the symplecta S₁ and S₂, respectively. Then we have the following cases for Ψ (S₁) \cap Ψ (S₂):

• If Ψ (S₁) \cap Ψ (S₂) = (n-4)-space, i.e., Ψ (S₁) \cap Ψ (S₂) = <u₁, u₂,...,u_{n,4}>, where u₁ = x₁ = y₁, u₂ = x₂ = y₂,... and u_{n,4} = x_{n,4} = y_{n,4}, then if x_{n,3} $^{\perp}\cap$ Ψ (S₂) = Ψ (S₂), then the point r such that Ψ (r) = <x_{n,3}, y_{n,3}, u₁, u₂,...,u_{n,4}> is contained in S₁ and S₂ which means that rank (S₁ \cap S₂) = 0.

• If Ψ (S₁) \cap Ψ (S₂) = 0-space, 1-space,..., or (n-5)-space, then there is no any TI (n-2)-space containing Ψ (S₁) and Ψ (S₂), i.e., S₁ \cap S₂ = φ and rank (S₁ \cap S₂) = -1. Then rank (S₁ \cap S₂) = -1 or 0.

Theorem: Let (p, S) be a non-incidence pair of a point p and a symplecton S in $D_{n,n-2}$. Then rank $(p^{\perp} \cap S) = -1$, 0 or 2.

Proof: Let Ψ (p) = $\langle x_1, x_2,...,x_{n\cdot 2} \rangle$, Ψ (S) = $\langle y_1, y_2,...,y_{n\cdot 3} \rangle$ be the correspondence of the point p and the symplecton S, respectively. Then there is the following cases for Ψ (p) $\cap \Psi$ (S):

- Ψ (p) $\cap \Psi$ (S) = (n-4)-space, Ψ (p) $\cap \Psi$ (S) = <u_1, u_2,..., u_{n.4} > where u_1 = x_1 = y_1, u_2 = x_2 = y_2,... and u_{n.4} = x_{n.4} = y_{n.4}, now if $y_{n.3}^+ \cap \Psi$ (p) = Ψ (p), then the subspace $\leq y_{n.3}$, $x_{n.3}$, $x_{n.2}$, u_1 , $u_2,...,u_{n.4} >$ is contained in a TI n-space $\leq u_1, y_{n.3}, x_{n.3}, x_{n.2}, u_1, u_2,...,u_{n.4} >$. Then we can find a point r such that Ψ (r) = $\leq u_1, y_{n.3}, u_1, u_2,...,u_{n.4} >$. Since, Ψ (S) $\subseteq \Psi$ (r), r is a point in the symplecton S and since Ψ (r) $\cap \Psi$ (p) = (n-4)-space, r is collinear to the point p. Then $p^+ \cap S$ is a point, i.e., rank $(p^+ \cap S) = 0$.
- $\begin{array}{lll} \bullet & \Psi \ (p) \cap \Psi \ (S) = (n\text{-}5)\text{-space}, \ \Psi \ (p) \cap \Psi \ (S) = < u_1, \ u_2, ..., \\ u_{n\text{-}5} > \text{where} \ u_1 = x_1 = y_1, \ u_2 = x_2 = y_2, ... \ \text{and} \ u_{n\text{-}5} = x_{n\text{-}5} = \\ y_{n\text{-}5} \cdot \text{If} \ y_{n\text{-}3} \cap \Psi \ (p) = \Psi \ (p) \ \text{and} \ y_{n\text{-}4} \cap \Psi \ (p) = \Psi \ (p), \ \text{the} \\ \text{we find 3 points} \ r_1, r_2 \ \text{and} \ r_3, \ \text{such that} \ \Psi \ (r_1) = < y_{n\text{-}3}, \\ y_{n\text{-}4}, \ x_{n\text{-}4}, \ u_1, \ u_2, ..., u_{n\text{-}5} >, \ \Psi \ (r_2) = < y_{n\text{-}3}, \ y_{n\text{-}4}, \ x_{n\text{-}3}, \ u_1, \\ u_2, ..., u_{n\text{-}5} > \ \text{and} \ \Psi \ (r_3) = < y_{n\text{-}3}, \ y_{n\text{-}4}, \ x_{n\text{-}2}, \ u_1, \ u_2, ..., u_{n\text{-}5} >. \\ \text{Since, following:} \ \Psi \ (S) \subseteq \Psi \ (r_1), \ \Psi \ (S) \subseteq \Psi \ (r_2) \ \text{and} \\ \Psi \ (S) \subseteq \Psi \ (r_3), \ \text{then} \ r_1, \ r_2 \ \text{and} \ r_3 \ \text{are points} \ \text{in the} \\ \text{symplecton S and since:} \end{array}$
- Ψ (r_1) \cap Ψ (p) = (n-4)-space.
- $\Psi(r_2) \cap \Psi(p) = (n-4)$ -space.
- $\Psi(r_3) \cap \Psi(p) = (n-4)$ -space.

Then each of point of r_1 , r_2 and r_3 is collinear to the point p. Then $p^{\perp} \cap S$ is a plane, i.e., rank $(p^{\perp} \cap S) = 2$.

If Ψ (p) $\cap \Psi$ (S) = 0-space or 1-space or,...,or (n-5)-space, then any selected (n-2)-space containing Ψ (S) must intersect Ψ (p) in 0-space, 1-space or,...,or in (n-5)-space, respectively which means that no points in S collinear to p, i.e., $p^{\perp} \cap S = \varphi$. Then for the above 3 cases we have rank (p⁺n S) = -1, 0 or 2.

Finally, Theorem 3, 4, 5 and 6 form a characterization for the geometry as follow:

Theorem: Let $\Gamma = (P, L)$ be a point-line geometry of type $D_{p,p,2}(F)$, then the following are satisfied:

- Γ is a strong parapolar space of diameter n-1.
- If (p, S) is a pair of non-incident point-symplecton, then rank (p⁺ ∩ S) = -1, 0, 2.

• If S_1 and S_2 are 2 different symplecta of $D_{5,3}$, then rank $(S_1 \cap S_2) = -1, 0$.

Proof: Theorem 3, 4, 5 and 6.

REFERENCES

- Abdelsalam, Z., 2002. Embedding and hyperplanes of point-line geometryof type D n, k, k = 2, 3, 4. Ph.D. Thesis, Ain Shams University, Cairo, Egypt.
- Abdelsalam, Z., 2007a. Characterization of Dual Half-Spin. Geometry J. Modern Mathe. Statist., pp. 1-4
- Abdelsalam, Z., 2007b. Characterization of Geometry of type D₆, 4. Australian J. Basic Applied Sci. (AJBAS).

- Buekenhout, F. and E.E. Shult, 1974. On the foundations of polar geometry. Geom. Dedicata, 3: 155-170.
- Cohen, A.M. and B.N. Cooperstein, 1983. A characterization of some geometries of Lie type. Geom. Dedicata, 15: 73-105.
- Cohen, A.M., 1984. Point-Line Spaces Related to Buildings. Handbook of Incidene Geometry, Buekenhout, F. (Eds.). North Holland, Amsterdam, 12: 647-737.
- Mohammed, AT. and Z. Abdelsalam, 2005. On Properties of Geomertry of type D_{nk} (F). J. Islam. Uni. Gaza (Series of Natural Studies and Engineering), 13: 155-161.