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Abstract: We give a brief survey of the representation of an inverse semigroup, especially of the representation
of a Clifford semigroup with identity (i.e., the Clifford moneid). First we give a short background of the
representation of finite groups, the mverse semigroups and the Clifford monoid which is a regular monoid as
a semilattice of groups. Hopf algebras and Semilattice graded weak Hopf algebras can be considered as the
generalization of group algebras and Clifford monoid algebras, respectively. We describe how the semilattice
graded weak Hopf algebra can be considered as the generalization of Hopf algebra as the Clifford monoids are
considered as the generalizations to groups. In this note, we also discuss the Clifford monoid algebra and its
relationship with the semilattice graded weak Hopf algebra like the group algebra has a relationship with the
Hopf algebra. We shed light on the importance of the representation of Clifford monoids, its algebras and the
representation of Semilattice graded weak Hopf algebras. One of the main objects of this note is to get inspired
from the rich structure theory of groups to make it possible develope the theory of inverse semigroups and of
Clifford semigroups with identity. The second object 1s to go a step further in jumping from the group of
grouplike elements of a Hopf algebra and getting motivation to obtain the Clifford semigroup with identity
which is the set of grouplike elements of a semilattice graded weak Hopf algebra. The main purpose of this
survey is to get inspiration to develope the representation theory of weak Hopf algebras and of semilattice

graded weak Hopf algebras and characterizing such algebras.
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INTRODUCTION

For the representation of fimte groups we refer to
Alperm and Bell (1995), Clifford and Preston (1961),
Green (1976) and Zhu (1994). Here we give a brief
mtroduction of the semigroup, the regular semigroup, the
mverse semigroup, the Clifford semigroup, the Hopf
algebra, the weak Hopf algebra and the semilattice graded
weak Hopf algebra. We avoid to give definition of various
terms to reduce the length of the note but of those which
are the most relevant, the reader may find the remaimung
concepts in the mentioned references.

A groupoid (S, W) is a non-empty set S on which a
binary operation p: $*3—5 1s defined (Howie, 1995). We
say (S, p) to be a semigroup if the operation u 1s
associative 1.e.,

(% Yl 2 )= (X y, 2 Ju Ju D

For all x, vy, zin S. If we take p as a multiplication
then we write

(Xylp=xy

and hence the associativity (1) 1s

((xy)z) = (x(yz)) 1"

The semigroup S i1s commutative if forall x, y m 3,
we have

Xy = ¥X (2)

An element a of a semigroup S is regular if there
exists an element x in S such that axa = a. The semigroup
S 18 regular if all its elements are regular. A semigroup S 1s
called completely regular if there exists a unary operation
ara'onSsuchthat (a ) '=a aa 'a=a aa"'=a'a,
or equivalently, a completely regular semigroup is an
inverse semigroup S in which, for everyain 3, aa~' =a'a.
An element a" of a semigroup S 1s called an mverse of an
elementaof Sifaa'a=aand a’aa” =a’. A semigroups S is

said to an inverse semigroup if each of its elements has a
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unique inverse element in S. Also by Petrich (1984) and
Silva (1992), 5 is an inverse semigroup if S is regular
whose idempotents commute.

By Howie (1995), a Clifford monoid is a regular
semigroup S with identity 1 such that all of its
idempotents lie in its center, or equivalently; a Clifford
monoid 18 a regular monoeid which can be expressed as the
semilattice of maximal subgroups {G, @€Y} of a regular
moeneid S such that 8 = U, G, and G, Gy G,; forall o,
BeY , where, Y 1s a semilattice. Further, for all ¢, BeY with
P = B, there exists a homomorphism @, G, > G, with
Py, o as the identity map on G, and if ¢p =P and py =1y
then the composition of homomorphisms @ ., @, = ¢, ..
The multiplication in S for all a, bin S is defined to be
ab =@, (@) @y 4(b). The partial ordering < in Y is such
that § < « if and only if, up = B for all ¢, p € Y, where < is
the natural partial ordering of Y.

Li (1998), introduced weak Hopf algebra with weak
antipode and discussed its properties (L1, 1999). He also
proved that the grouplike elements of a weak Hopf algebra
1s a regular monoid.

A bialgebra H over a field k 15 called a weak Hopf
algebra if there exists an element T m the convelution
algebra Hom, (H, H), such that, 1d*T*id = id and
T*id*T=T, where * denotes the convolution product in
Hom, (H, H), then T is called weak antipode of H (Li, 1998;
Li and Cao, 2005). A weak Hopf algebra H with a weak
antipode T is called a semilattice graded weak Hopf
algebra if H = @,H, for the semilattice Y, such that
HHuc H,; for ap < o, B; o, PeY, where eachH,; €Y is a
sub-weak Hopf algebra which 1s a Hopf algebra with
antipode T|,. There are Hopf algebra homomorphisms
P from H, to Hy if et =P such that for all ain H,and b in
H, the multiplication a®b in H can be given by a®b = ¢, .4
(a)@g, Lp(b), the set of grouplike elements G(H) of H 1s a
Clifford monoid (L1 and Cao, 2005).

THE REPRESENTATION OF FINITE GROUPS

We give a review as a brief introduction to the
theory of representation of the finite groups. By the
representation theory we means the classification of
homomorphisms of finite groups into groups of matrices
or of linear transformations (Curtis and Reiner, 1962).
Frobenius and Burnside played an important role in the
foundation of the representations of finite groups.

Definition 1: Let G be a finite group and M a vector
space over a field k. A representation of group G with
representation space M is a homomorphism T:g—T(g) of
G inte GL(M). Two representations T and T  with
representation spaces M and M’, respectively are
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equivalent if there exists a k-isomorphism S of M onto M’
such that T'(g)S = ST(g) 1e., T'(g)Sm = ST(g)m for all
meM and geG. Let N be a subspace of M and T(g)neN for
all geG and neN, then N is called a G- subspace of M.
The dimension [M: k] of M over k is called degree of T
(Curtis and Reiner, 1962).

A matrix representation T of G with non-zero
representation space M is irreducible if the only G-
subspaces of M are {0} and M, otherwise T is called
reducible. The representation T 13 called completely
reducible if for every G-subspace N of M there exists
another G-subspace N’ such that M = N& N’ as a vector
space direct sum.

The Wedderbum Structure Theorem plays
important role m the theory of irreducible representation.
We give its statement as under:

an

Theorem 1: The algebra A 13 semisimple if and only if, 1t
1s 1somorphic with a direct sum of matrix algebras over a
division algebras (Alperin and Bell, 1995).

Corollary 1: The algebra A is simple if and only if, 1t 15
1somorphic with a matrix algebra over a division algebra
(Alperin and Bell, 1995).

Another important result which play a very basic
role in the wreducible representation is the well
known Schur Lemma. For details we refer to Serre
(1977). For the reader's interest we give its statement here.

Theorem 2: [Se, Schur Lemma). Let py: G—=GL(V)and
pw: G—GL(W) be two Irreducible representations of
a finite group G and let f be alinear map from V into

W such that py (g)°f = £°p py (g) for all geG. Then:

» If py and py are not 1somorphic, we have £ = 0.
o IV =Wand py = pw, { is a homothety, i. e., ascalar
multiple of identity.

The well known orthogonality relation between the
characters of all irreducible representations of a finite
group form the characters into a complete orthonormal
systerm. The wreducible representations and the character
theory has a vital role in the representation of finite
groups. We also refer Serre (1997) for the Mackey's
the
representation of a group. Further, we include here the
Frobenius Reciprocity Theorem for the restriction of
representation U of a group G to a subgroup H of G and
the induced representation of G from the representation of

Trreducible Criterion for induced irreducible

a subgroup of G. The statement of the theorem i1s as
follows:
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Theorem 3: Let U be a kG-module and let H be a
subgroup of G and let V be a representation of H. Then as
a k-vector spaces we have Hom,, (V, Res,” (U))=Hom,,
(Indy*(V), U).

Where, Res,“(1)) and Ind,®(V) denote, respectively
the restriction of the representation U to H and the
mduction to G of the representation V of H.

Green (1976) worked on the indecomposable modules
and R. Brauer developed the blocks theory of modules
over the group algebras [CR81/87]. They also has given
a close relationship between the representation theory of
algebras and the representation of fimite groups.

In fact, the theory of group representation is rich in
its structures. Tt is natural to ask about the generalization
of thus theory for the representation of semigroups and
for the associative algebras, in particular for the
representations of Clifford monoids and its algebras.
Moreover, for the representation theory of Hopt algebras
and for the semilattice graded weak Hopf algebras.

THE REPRESENTATION OF INVERSE
SEMIGROUPS

In this study, we give some background of various
kinds of representations of inverse semigroups.

A fundamental inverse semigroup is an inverse
semigroup having no nontrivial idempotent separating
congruences. Such semigroups play an important role in
the structure theory of inverse semigroups. Munn (1970)
representation is an action of an inverse semigroup on its
underlying semilattice. Murm showed how to construct a
fundamental semigroup T, from the semilattice E such that
Ty contains a semilattice of idempotents. The elements of
T: being the partial 1somorphism of E. Some effective
actions of inverse semigroups are introduced by O' Carroll
(1977a, b).

An ordered representation, on a poset (X, <), of an
inverse semigroup S is a pair ('y, P), where y:5>—(X, <) is
a homomorphism and P:X—E(3) 15 a surjective 1sotone
function satisfying:

(OR1)YDomy(e)= P~'([e]) for all ecE(S).
(OR2)Ifs™'s P{x) then s ™'s=P(y(s)(x)).

Lawson (1996) discussed the order representations
and showed that every ordered representation of an
mverse semigroup S determines and 1s determined by a
special kind of cover of S.

Clifford (1941) defined a completely regular
semigroups, le., for all elements a n an inverse
semigroups 3, there exists e and a’ m S such that ea = ae
and aa’'=a'a=e Vagner (1952, 1953) used the name
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generalized groups for the inverse semigroups and
developed theory of such semigroups and Preston
(1954a-c) has given the representation theory of inverse
semigroups. Both discussed their ideas about the mverse
semigroups independently.

By Howie (2002), an inverse semigroup is probably
better to regard as generalization of a group rather than
specialization of semigroup. He also expressed that we
can regard inverse semigroups as generalization of
groups, since there are many sigmficant examples of
inverse semigroups which are not groups. There are
numerous ways to define an mverse semigroups. These
semigroups are more natural being isomorphic to the set
of partial symmetries.

Schwarz has given the decomposition of a finite
commutative semigroup S admitting relative inverses
which were latter called the Clifford semigroup by Howie
(1995) mto a disjoint umon of character groups of a
certain maximal subgroups of the semigroup S. Lin (1965)
generalized the Schwarz decomposition theorem to the
so-called pseudo-invertible semigroups. Lin also
generalized the case of complex character semigroups to
the general semigroups.

Let S be an mverse monoid with E(S) as the
semilattice of idempotents. The set {(s, t)eS=Sjse = et,
e€E(3)} 1s the set of least group congruence 0 on S. S 18
called E-unitary if so =1 lies in E(S) for each s in S. S is
said to be a Clifford monoid if and only if, se=es for all s
in S and e in E(S), (Howie, 1995; Silva and Clifford, 1992).
By Petrich (1984), the class of all Clifford monoids form a
variety of inverse monoid. Further, we can say that the
class of idempotents of all Clhifford monoids form the
subvariety of all Clifford monoids.

THE REPRESENTATION OF CLIFFORD
MONOIDS

Clifford (1941) proved the famous structure theorems;
Theorem 4 and 5 for the semigroups which Clifford used
the name semigroups admitting relative inverses by virtue
of these results Howie first time named such semigroups,
the Clifford semigroups. In fact, such semigroups are
completely regular semigroups as termed by Petrich
(1973). The Chitford semigroups are the completely regular
semigroups whose idempotents lie in its centre.

Representation of a Clifford monoid 15 a
homomorphism ¢: S— I; where I; 13 the symmetric mverse
monoid on a finite set X, with [X| < [S], also (Howie, 1995).
If 18 one-one, then @ 1s called the representation faithful.
In particular @: S— I; described in Howie (1995). Th. 91s
called Vagner-Preston representation of S. By Howie
(1995). Th. 9, for every representation ¢: S— I the umage
@(3) 1s a Clifford monoid as a submonoid of 1.



J. Modern Mathe. Stat., 2 (3): 85-92, 2008

A Clifford monoid, known as the semilattice of
groups, is the regular semigroup S whose idempotents lie
n its centre. It has been structured by Clifford in (1941)
and latter Howie (1995), redescribed that a Clifford
semigroup is a strong semilattice of groups. Petrich (1984)
and Howie (1995), we can say that, if S is a Clifford
monoid then S is disjomt umon of groups G,, for
¢€Y (a semilattice) and there 1s a map

@, 5 G, = Gy, — g, g, e, where e;cGy,
and for all g, €G, and e; €3y, we have
(8. @0 p) 8@ op) = (Zuep)(gpep)
~ 8480 %
=(2.8p) &
(885 ) ot

and @, ; is a homomorphism. Clearly, ¢  is an identity
(isomorphism) G, —+ G,. Moreover, forall a>p=>y,

(g ) Qo p Pp ot = (Eaeple,

= (g, Nege)
= (g.)eg,)
T 2.9

= (g0,

Thus, S is a strong semilattice Y of groups G,; ¢y,
Le,S[Y.;G ,. ¢, the representation [Y; G . ¢, 4] is
called Clifford representation of the Clifford monoid S.

By Petrich (1984), let S; be a free Clifford monoid on
a nonempty set X, then S; can be described as a quotients
of free monoid with mvolution by the least Clifford
monoid congruence. A congruence p on a monoid 3 such
that 5/p is a Clifford moneid is a Clifford congruence. The
mtersection of all such congruences 1s the least
congruence of S. For any monoid S, 1 denotes the least
semilattice congruence on 3. From the varieties of Clifford
monoids we can construct the varieties of Clifford
monoids algebras.

Let M be an arbitrary mverse submonoid of I; for
some nonempty set X and consider the following relation:

Ty = 1%, v)eX=K|(A peM) x € domp and xp = v}

then py, 18 called the transitivity relation of M. We have
the following fact.

Lemma 1: If M 1s an Howie (1993) mverse submonoid of
a symmetric inverse monoid I, then py, 1s symmetric and
transitive on X.

In general py, is not an equivalence relation, since
there may exist elements x in X that are not in dom
py . H. Thus there exists x in S such that (x, x)¢py.
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However, if we have (x, y)¢ py for some y then by
symmetry and transitivity we have that (x, x)¢ py,. Thus

Dom pyy =X = {xeX|(X,X)€ p i}

P
Then p,, is an equivalence relation on 3.

M 1s said to be an effective mverse submonoid of
Ly if Xy = Py then certainly py, is an equivalence on X.
The p,, -classes in X, are called the transitivity classes of
M and M is called transitive if p,,; is universal relation on
Xou Thus M 1s effective and transitive if and only if, for
all a in X there exists e in M such that xp = y. The
representation ¢: S— I is called an effective (transitive)
representation if S¢ is an effective (transitive) inverse
submonoid of I,

Let {X;: 1€} be a family of pairwise disjoint sets and
let X=u,, X Let S be an inverse monoid and suppose that
for each icT we have representation ¢ S— Iy For each s
1n S we may regard the one-one partial map s¢, as a subset
of X xX,. Then v, s¢, 13 a partial one-one map of X,
whose domain is U, dome;; this map is denoted by ¢ and
is called its sum of representations ;. Tt is expressed as
© = &.¢. IfI={1, 2, ., n}, we can write @ = @,&..8Q,.
Because the definition (Howie, 1995, Def. 5.8.1) is in term
of set-theoretic union, the infinite commutative and
associative laws hold for the direct sum .

If @: 85— I; and J: S> I, representations of mverse
monoid 3, then ¢ and | are equivalent if there exists
bijection 8: 3X>Y with the property that, for each s in 3,

s = {(x0, x'0)eYxY|(x, x)es@ }, or in otherwords

dom(sy) = (dom(s@)B and for x in dom(sg), (x(sp))B =
(B

According to Clifford and Preston (1961) the matrix
representation of the semigroups has been discussed in
details and the theory of representation of semigroups is
developed. The semisimplicity of the algebras of the finite
commutative semigroups which 1s wnion of groups. The
following theorem gives this characterization

Theorem 4: Clifford and Preston (1961) [Th. 9] Let Sbe a
finite commutative semigroup and k be field. Then k[ 3] 1s
semisimple if and only if, S is umon of groups, the orders
of which are not divisible by characteristic of k.

The semisimplicity of finite inverse semigroups is
given in the following theorem.

Theorem 5: Clifford and Preston (1961) [Th. 9]. The
algebra k[S] of a finite inverse semigroup S over a field k
1s semisimple if and only 1f | the characteristic of k 15 zero
or a prime not dividing the order of any subgroup of S.
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Let Ik be a field and (k), denote the algebra of all n*n
matrices with entries in k. Let S be a semigroup. By a
representation G of 3 of degree n(a positive integer)
over k 18 a homomorphism of 5 mto a multplicative
semigroup of (k), 1.e., each element a of S corresponds to
an nxn matrix (or a linear transformation) G(a) such that
T'(ab) =T'(a) I'(b) for alla, bin 3. If T 13 an 1somorphism of
S upon a semigroup of (k), then it is called faithful.

We see by Clifford and Preston (1961) each
representation I"" of S over a field k denotes in a natural
sense an extension of a representation I" of a group G
over k. If I' is as above, among all extensions, there is a
least degree umquely determined by I' within equivalence
which is called basic extension T™ of T

A representation I of a semigroup S 1s called
proper 1if:

¢ TI'(z)=01f Shas a zero z
* TI' 1s not decomposable mto two representations one
of which is null (Clifford and Preston, 1961 ).

We have the following result for the indecomposable
constituents of basic extension as the extensions of the
indecomposable constituents of I,

Theorem 6: Clifford and Preston (1961) [Th. 9]. A proper
representation I' of a group G 1s extendible to S if and only
if each of its indecomposable constituents 1s extendible.
If T" 15 extendible, then the indecomposable constituents
of a the basic extension T of T" are the basic extensions
of the mdecomposable constituents of I". In particular, I"
is indecomposable if and only if, I is indecomposable;
mn fact any proper extension to 3 of an indecomposable
representation I" of G is also indecomposable.

Since, the role of irreducible representation is very
important in representation theory due to the fact that all
other representations can be obtained from the irreducible
constituents. Following results are useful in obtaining the
wrreducible representations as the basic extensions to that
of a semigroup S of the extendible wreducible
representation of a group G. We add these results to
understand the whole picture of the representation theory
of semigroups and in particular of Chfford semigroups
with identity.

Theorem 7: Clifford and Preston (1961) [Th. 9]. LetI" be
an extendible representation of a group G and let I' be
any extension of I' to 8. Then the non-null irreducible
constituents of I are the basic extensions of the non-null
irreducible constituents of I'. The basic extension I of T
15 wrreducible if and only if, T' 1s wreducible; thus we get all
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the irreducible representations of S as the basic
extensions of S5 of the
representations of G.

extendible irreducible

Theorem 8: Clifford and Preston (1961) [Th. 9]. Full

reducibility holds for the representations of S over the

field k if and only if,

¢ Full reducibility holds for the extendible
representations of G over k.

» The only proper extension to S of a proper

representation of G 1s the basic extension.

Corollary 2: Clifford and Preston (1961) [Cor. 2]. Let S be
a finite semigroup and assume that the characteristic of k
does not divide the order of G. Then the semigroup
algebra k[3] is semisimple if and only if, the only proper
representation of S extending any given proper
representation of G 1s 1ts basic extension.

The special case of above theorem 1s that the Clifford
monoid algebra of any finite Clifford monoid is semisimple
if and only if, the group algebra of each maximal subgroup
1s semisimple.

The characterization of commutative semigroups 1s
given in contrast to that of abelian groups. S. Schwarz and
Hewitt and Zuckerman in their collaboration in 1955 and
i 1956 developed character theory of commutative
semigroups, latter Howie described their work in Howie
(1995). The character of commutative semigroup with
identity which is union of a semilattice of groups. The well
known orthogenality relation for the characters also
holds. The character of a Clifford monoid 15 obtained
similarly. Thus it is interesting to define the character of
the semilattice graded weak Hopf algebras using the
definition of character of Clifford moneid and getting
inspiration from Larson (1971) who developed the theory
of characters of Hopf algebras from the character theory
of groups.

Since, the mverse semigroups are generalized named
as generalized groups by Vagner (1952, 1953). The
algebras of inverse semigroups may be named as the
generalized group algebras by analogy. One can travel
from group algebras to the algebras of mnverse semigroups
with identity passing through the Clifford monoid
algebras as for as their representation and characterization
are concerned.

THE CHARACTERIZATION AND THE
REPRESENTATION OF HOPF ALGEBRA

We refer to Montgomery (1993) for the definitions of
coalgebras, antipode, Hopf algebra, Hopf ideals, Hopf
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modules, comodules and for some other commonly used
terminologies related to Hopf algebras. We only give
definitions of some unavoidable terms like integrals in
Hopf algebras and semisimplicity ete.

SEMISIMPLE AND COSEMISIMPLE FINITE
DIMENSIONAL HOPF ALGEBRA

A Hopf algebra H is semisimple if every left
H-module (right H-module) can be decomposed into
indecomposable irreducible left H-submodules (right
H-submodules). By Montgomery (1993) a left mntegral
in a Hopf algebra H is an element tin I such that
ht = g(hjt, for all h in H, where € is the counit of the Hopf
algebra H.A right mtegral in H 1s defined by dual
statement. The space of left mtegrals of H can be defined
to be the subset

1= ftel bt = e(ht (v helD)}

of H. The space of right integrals denoted ;|* of H can be
defined by the dual statement. A Hopf algebra H is called
unimedular if , ' =, [*.

Now we recall the well known theorem in
representation theory which is termed as Maschke's
Theorem, we state as follows:

Theorem 9: Montgomery (1993) [Th. 2.2.1]. Let H be a
finite dimensional Hopt algebra, then H is semisimple if
and only if e(, [") #0 if and only if e(,,[* }) # O.

By Kaplansky (1975), if H 18 a finite dimensional
sermisimple Hopf algebra over an algebraically closed field
k of characteristic zero. Then H is Frobenius type, 1. e., if
V 1s an wreducible representation of H then dimV divides
dimH. Further, Kaplansky has conjectured that a Hopf
algebra of prime dimension over k(as above) 1s a group
algebra. By him, (Kaplansky, 1975), the square of antipode
of a finite dimensional semisimple Hopf algebra is identity.
Zhu (1994) proved the Kaplansky's conjecture for a
Hopf algebra of prime dimension, he showed that a prime
p-dimensional Hopf algebra over an algebraically closed
field k is isomorphic to the group algebrak Z  of the
cyclic group Z .

Let A be a finite dimensional Hopf algebra over k, if
B is a subHopf algebra of A, then by Nichols-Zoceller
Theorem Montgomery (1993) A is a free left (or right)
B-module. Larson and Radford (1995) proved that if A 1s
semisimple then B is semisimple and if A and its dual A
are semisimlpe then B and its dual B" are semisimple.

A coalgebra C is simple if it has no proper
subcoalgebras and C is cosemisimple if it 15 direct sum of
sinple subcoalgebras. If C 1s finite dimensional, then it 1s
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cosemisimple if and only if its dual C" is semisimple. We
know by Montgomery (1993) that a cocommutative and
cosemisimple Hopf algebra over an algebraically closed
field of characteristic zero 13 a group algebra. Larson
(1971) has generalized the Maschke's Theorem, i.e., if
Chark does not divide the dimension of finite dimensional
involutory Hopf algebra, then the Hopf algebra and its
dual are semisimple. He also discussed the character
theory of Hopf algebras and proved that the
orthogonality relation holds for finite dimensional Hopf
algebras.

Green (1976) hat the indecomposable components of
a coalgebra are blocks with respect to the equivalence
relations on the simple comodules using mjective covers.

POINTED HOPF ALGEBRA, PATH COALGEBRA
AND THE QUIVER REPRESENTATION

Let C be a coalgebra with the comultiplication A and
counit £ An element ¢ in C 15 called grouplike if Alc) =cac
and e(c) = 1, the set of grouplike elements is denoted by
G(C). For h, geG(C), an element ¢ is called (g, h)-primitive
{(or skew-primitive) 1f A(c)=cegthec, the set of (g, h)-
primitive elements of coalgebra C 1s denoted by P, ,{C). If
C =B is a bialgebra and g = h = 1, then the elements of
P(B) =P, , (B) are simply called the primitive elements of
B. A Hopf algebra H 1s called Pomted if G{H) = H,, where
H, 1s the coradical (Montgomery, 1993) of H.

Andruskiewitsch and Schneider give a conjecture
that a finite dimensional Pointed Hopf algebra over k of
characteristic zero 1s generated as an algebra by its
grouplike and skew-primitive elements. They give a partial
proof of the conjecture in the form of Theorem 1.3, they
prove that the conjecture helds for fimite dimensional
coradically graded Hopf algebra with coradical of odd
prime dimension. As far as the classification of pointed
Hopf algebras is concerned, the grouplike and skew-
primitive elements play an vital role, even, in the case of
the Hopf algebras which are quantum groups. First we
introduce briefly the quiver and path algebra.

A quiver Q = (Q,, Q,, 8, t) is a quadruple(which is an
oriented graph) consisting of Q, the set of vertices, Q, the
set of arrows and the two maps s, t Q,—Q, which
associate to each arrow weQ), its source s()eQ, and its
target t(a)eQ,, respectively. An arrow «eQ, of source
a = s(o) and target b = t(c0) is usually denoted by «:a>b.
A quiver 13 simply denoted by Q. A sequence of
comnected arrows 15 called a path of the quiver the
vertices can be identified as trivial paths. If Q is a quiver
with vertex set Q, and arrow set @ , The path coalgebra
kQ of @ 13 defined to be the k-span of all paths in Q
with coalgebra structure A(p) = Xy, . .up’ep’. where
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p.p, 18 the concatenation aa,..a,a..a, of the path
P, =aa,,..a,, and p;= a...a, where a,cQ and t = |p| denotes
the length of the path p and the starting vertex of a., 1s
the end of a in path p.

Cibils (1993) used quivers to give the irreducible
representation of a finite dimensional non-commutative
and non-cocommutative Hopf algebras. These Hopf
algebras are considered as quantum groups. He gave
some results on the indecomposable modules
decomposition. He also presents the finite representation
type of algebra using the Auslander-Reiten quiver as the
indecomposable modules and relations given by almost
split sequences. Cibils and Rosso (2002) defined the Hopt
quivers and classified finite dimensional pointed Hopf
algebras using the path coalgebra.

An algebra A 1s said to be left (right) hereditary if any
left (right) ideal of A is projective as an A-module. A is
hereditary if it is both left and right hereditary. Chin (2002)
proved that every pointed hereditary coalgebra over a
field k(algebraically closed) is a path coalgebra of quiver.
Due to the isomorphism of pointed hereditary coalgebra
and the path coalgebra given by Chin (2002), we can give
the quiver representation through path coalgebra for the
representation of pointed hereditary Hopf algebras.

Tt looks interesting to ask about the development of
the above representation and characterization for the
fimte dimensional pointed semilattice graded weak Hopf
algebras over an algebraically closed field of characteristic
Zero,

REPRESENTATION APPROACH TOWARDS
SEMILATTICE GRADED WEAK HOPF ALGEBRA

A commutative semigroup S 1s separative if for all a,
bin 5, ab = a*> = b* implies a = b. Let S be a separative or
cancellative commutative semigroup with identity (Clifford
and Preston, 1961). Let 1 be a relation on S such that anb
=3 x, y such that ax = b", by = an, then the homomorphic
mage 3'=5/1 = U,3,, where Y 15 a semilattice and S, are
called arclimedean components of S and S 1s called
archimedean semigroup. By Clifford and Preston (1961)
[Th. 4.12], S/1 is amaximal semilattice homomorphic image
of S. By Clifford and Preston (1961) [Th. 4.13] every
commutative semigroup S 15 uniquely expressible as a
semilattice Y of archimedean components S (ateY), Y=5/m
with S, the equivalence classes of S mod 1).

If aib= ab™ = b™", ban=an ', a, bin S, m,ne Z *, if S
1s separative then a = b. Now, by Clifford and Preston
(1961) [Th. 4.17] a commutative semigroup S can be
embedded into a semigroup S which is union of groups if
and only if, S 1s separative if and only if, its arclumedean
components are cancellative.
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TLet S be a regular separative(or cancellative)
commutative semigroup with identity then S can be
expressed urmquely as the semilattice Y of its archimedean
semigroups 3, (@€Y). Of course, each of its archimedean
components S, is an equivalence class mod 1. Since, S
can be embedded in a semigroup Q which is union of
groups G, (¢€Y, a semilattice), where G, 1s the quotient
group of 8,, for each & in Y such that ab™' e, for every a,
b in S, Thus S, c G, (Clifford and Preston, 1961 ).

Let k be algebraically closed field such that its
characteristic does not divide order of any subgroup of S.
Then the group algebra k G, 1s a pointed Hopf algebra for
each ¢€Y. The semigroup algebra kQ = k<, G >=a,.kG,
is a Clifford monoid algebra so by Li (2004) and Li and Cao
(2005) kQ 18 a pointed semilattice graded weak Hopf
algebra.

Tt is interesting to note that in a wealk Hopf algebra
(Li, 1998), the set of grouplike elements is the regular
semigroup with identity. Weak Hopf algebra can be
considered as the generalization of Hopf algebra, the set
of grouplike elements of the Hopf algebra is a group. In
understanding the structural relationship between the
weak Hopf algebra and the Hopf algebra one can get
through the structural relationship of above algebras by
the structure of the semilattice graded weak Hopf algebra,
set of whose grouplike elements is the Clifford monoid.
A Clhfford monoid 18 an nverse semigroup (with 1)
whose 1dempotents lies m its centre. Thus a Clifford
monoid can also be named as generalized group in the
Vagner's (1952, 1953).

After getting through the above sketch one may
be able to obtain the representation of Weak Hopf
algebras from the representation of Hopf algebras by
developing the representation of the semilattice graded
weak Hopf algebra. Thus, it looks useful to discuss first
the representation of semilattice graded weak Hopf
algebras.

The theory of representation and characterization of
Hopf algebras has been developed in several aspects and
1n particular that of quantized Hopf algebras has also been
well developed and is being applied to physics and to
some integrable systems. Some research on weak Hopf
algebras and semilattice graded weak Hopf algebras is
also done 1n the obvious sense but there 1s still a capacity
in this area of doing worlk similar to that of quantized Hopf
algebra, rather much is to be done of its representation
theory and the characterization theory.

Since, the Chifford monoids appear to be the set of
grouplike elements of semilattice graded weak Hopf
algebras. Further, we know that a Clifford monoids give us
special class of groups which form a semilattice of these
groups. In the case of pointed semilattice graded weak
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Hopf algebra, the algebra generated by grouplike elements
is isomorphic to coradical and the set of grouplike
elements 1s always a Clifford monoid.

Analogous to the theory of representation and
characterization of Hopf algebra one may investigate the
same for the semilattice graded weak Hopf algebras.
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