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Generalized Rational Runge-Kutta Method for Integration of
Stiff System of Ordinary Differential Equations
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Abstract: This study describes the development, analysis and implementation of generalized implicit rational
runge-leutta schemes for integration of stiff system of ordinary differential equations. Its development adopted
Taylor and binomial series expansion techniques to generate its parameters. The analysis of its basic properties
adopted Dalhquist, A-stability model test equation and the results show that the scheme 1s, consistent,
convergent and A-stable. Numerical results show that the method 1s accurate and effective.
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INTRODUCTION y(x)=E ®) +ye"™ (5)

A differential equation of the form

v=fxy.y&x)=y.,asxzb (1

.o .
whose Jacobian 2= possesses eigen values

Ay =U; iV, j=1(1), 2)

where, 1=_f_7 , satisfying the following conditions.

(a) U<<0,j=1()n

(b) Max | U; ()] > min |U; ()

or rix)= M =] (3)
m1n|Uj(x)|

where, r (x) denotes is the stiffness ratio is called stiff
ODEs. For example, the differential equations:

My wy-Ex + By =y, @

where, E (x) continuously differentiable, A is a complex
constant with Re (&) <<0, with the exact solution

consisting of 2 components namely E (x) which is slowly
varying in the interval of integration (a, b) and the second
component y,e"™ decaying rapidly in the transient phase
at the rate of -1/ is stiff.

(2) The system of differential equations of the form.

f

y'= ©)

- 0.00005 100
=100 —0.00005 v

with
yo)=[1. 1] .0 <x <lon

whose selution 1s obtained as

=g S 108« 0]

Cos 100x - Sin 100x

Whose, transistory phase is the entire interval of
integration 0 < x <107 with 501 as complete oscillation
per unit cycle is an ODEs possessing these types of
properties are called stiff oscillating ODEs.

Most of the conventional Runge-Kutta schemes
cannot effectively solve them because they have small
region of absolute stability.

This perhaps motivated Hong Yuanfu (1982) to
introduce a rationalized Runge-Kutta scheme of the form
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R
Yot Z WKI
Yon =10 ®)
Ly, > VI
i=1
Where:
8
K;=hf| x, +¢;h, v, +Zaijkj
i=1
s
H,=hg| x, +d;h, z, +Zbijkj (9
i=1
with
g (Xn »Zy ) - _Zif(xn, Ya )
subject to the constraints
R
¢ = Zaij
j=1
R
dy = > by (10)
j=1

Since, the method possesses adequate stability
property for solution of stiftf ODEs, the papers consider
the extension of the scheme to a general step process so
that i1s can serve as a general purpose predictor for
multistep schemes.

R
yn+m—1 + ZWiKi

_ i=1
Ynim = : R (1 1)
1+yn+mfleiHi
i=1
Where:
R
Kl =hf S Cih> Yatma T Z aini
™ (12)
R
Hy = hg| Xy, +dih, 2,00+ D0 byH;
i=1
with
2
g(xn+km1’ Zr1+m-1) - Zn+m—1f(xn+m-1’ yn+m-1)(13)

In the spirit of Ademiluyi and Babatola (2000) the
scheme is classified into:
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* Explicitifa; =0,b; =0, forj > 1.
»  Semi-implicitifa, =0,b, =0forj>1
s TImplicitifa; # 0, b, # 0 for at least one j = 1.

Derivation of the method: Tn this study, the parameters V,,
Wi, C, d, a;, b, are to be determined from the system of
non-linear equations generated by adopting the following
steps:

»  Obtain the Taylor series expansion of Ki's and Hi's
about point (X, s Yaew) for i=1 (1)R.

»  Insert the series expansion mto Eq. 11.

+  Combine terms in equal powers of h and compare the
final expansion with the Taylor series expansion of
Varm about (x,.y,) in the power series of h.

The number of parameters normally exceeds the
numbers of equations, but m the spirit of King (1966),
Gill (1951) and Blum (1952), these parameters are chosen
as to ensure that (the resultant computation methed has:

*»  Adequate order of accuracy.

+  Minimum local truncation error bound.

»  Large interval of absolute stability.

¢ Minimum computer storage facilities requirement.

One-step one-stage schemes: By settingm =1 and R =1,
in Eq. 11 the general one-step one-stage scheme is of the

form
+WEK
=T a4
1+y, ViH,;
Where:
K, =hf(x, +¢h, v, +a;,K))
H; =hg(x, +d;h, z, +b;H;) (15)
g ( Xn Zy ) = 7Zif(xn > ¥n ) (1 6)
and
7, = y (17)
with the constraints
¢ = ay
d =by (18)

The binomial expansion theorem of order one on the
right hand side of Eq. 11 yields

Yau1 = Yo+ Wik - YIZIVIHI + (19)

(higher order terms)
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While, the Taylor series expansion of y,,, about v, gives

, B,
Va1 = Yo + hyh +—2 Y y
(20)

(4) + Ok

Adopting differential notations

y. =1t

yr =1, +f,f, =Df,

yO = 420, B, (£ 4L L)
=D, +1,Df,

yib = £, #3066 +360F  + 0+
£, (£, = 20,8, + €26, )+ (L, +£,1,)
(3f,, )+ (36,£, + &)
=D, + {,D*f, +3Df,Df
+1£°Df,

(21)

substitute Eq. 21 into Eq. 20, we have

h? n o,
Yot = Yo +hly +ZoDI, +§(D £, +£,Df, )
4

+h—(D3fn + £, D%, +3Df,Df, +£7Df, )+ 0h’
41

(22)

Similarly the Taylor series expansion of K, about
(Xo¥,) 18

f +{chf, +a kit |+
K =h nz (21 X 11 1y) A 2 +0(h2)
(e7h’f,, +20,ha, k 1y, ) +a, k1,

(23)
Collecting coefficients of equal powers of h, equation

can be rewritten in the form

K, =hA, +h'B, + h'D, + 0h? (24
Where:
A, =f,.. B, =¢ (f,H,f,)=C Df,
D, =cB/f, +12Cf (, +26f, +17 ) (25)

—Clfo +1,C} DT,

In a similar manner, expansion of H, about (x,, z,)
vields

H, =hN, + h'M, + 'R, + Oh' (26)
Where:

Nl = g (Xﬂ’ n) gn
M, =d,(g, +g.g,)=d,Dg,

R, - d? (2,02, + % D%, )

(27)

Yn Ya

—2f

=+ fxxy: Bz

(28)

— _ 2
g)g(z - — 72f1’l 7ynfyy

n

8., = —2f, - 2yif,,
g, —4ynf +6ynf +y4f

Substitute Eq. 28 into Eq. 27, we obtained

. 2
N, = =y M, = < [Df +£}, (29)

2’ n

Yo Ya ¥a

2 _ 2
yﬂ yﬂ yﬂ
2
S ARSE A —ﬂ[f“ +f,
Yo \ ¥

Using Eq. 25 and 26 1n 19, to get

Vaou = Yo+ W, (hA, +h*B, +h°D, +0h*)

y2 (Vi (N, 1 BM, R+ 0h) | 0
= v, (WA, —y2 VN Jh+(WB-yI VM, )

h? +{W,D, —y2 VR, )h* +0h’

Comparing the coefficients of the powers of h and h?
i Eq. 22 and 30, we obtained

WA, _YEV1N1 =1,
WB, - Yi VM, = Df,

(31)

Adopting the values of A, N,, B, and M, as earlier
defined, we have system of non-linear simultaneous
Equation

W, +V, =1, WC +Vd =% (32)
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with the constraints

;) = ¢
b, =4, (33)
With local truncation error
2f  2ff
6 ! Yo Ya
(34)

Here, we have more umknowns than the number of
equations, hence some of them have to be declare free as
W, =%, V, =% to obtain

DV, =W, ="c =a,=%d=b, =%

Substituting these values in Eq. 14 we obtain a family
of one-step, one stage schemes of the form

yn +%K1
Yo = yi (35
1—i—7”H1
Where:
Ki=hf(x,+%hy, +%K)
H =hg (x,+%h,z +Y%H,) (36)
Also with
AV, =% W, =%, d =c¢ ='%,a,=b, =%
Eq. (14) becomes
yn + %KI
yn+1 = 3 (37)
1+ZYHH1
Where:
K, =hf(x,+%h y, +% K
Hi=hg (x,+%h, z,+ % H) (38)
With:

W= 1/3> v, :2/3> a; =C, = 1/3, b11 :dl =7/12

yn +%K1
yn+1 = 27 (39)
1+§YnH1
Where:
K, =hf(xn+ }h yn+}XK)) (40)

I, =hg (xn+ h, xn+ M)

Two step one-stage schemes: By setting M=2andR =1,
we obtained 2 step, one-stage schemes of the general
form.

— yn+1 + WKI

= (41)
Yarz l+y,., ViH,
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Where:
K, =hf(x,, tch, v, +a, K))
H, =hg (x,; +dh, z,,, + b, H) (42)
With the constraints
¢, =a,d =b, (43)

Adopting Binomial expansion technique and ignoring
higher order terms, than one we obtained

Yoz = Yan T WK, 7Yr21+1 ViH,

(44)
+ higher order terms
Expanding K, using Taylor series expansion
K, = hAP, + B+ h'D, + Oh' (45)
Where:
Al 'fn+1= B1 = ClDfn+1= (46)

Dl - clfnynH + %clzsznH

In a similar manner, the Taylor series expansion of H,
about (X, Z,.,) yields

H, =hN, + h'M, + 'R, + Oh' {47
Where,
—f —d f?
N, :2—“”, M, =— ! [Dfrl+1 +2—“J
Yn+1 Ynﬂ yn
- 2
o) ]
—dlz ynﬂ ynﬂ
by 2f [ £2
o + yZ [sznﬂ — {ﬂ_ﬂ_'_ fx j
yn+1 yn+1
Using (46) and (48) in Eq. 49, we have
YI’A+2 = yn+1 + W (h'Al + thl + h3D1 + 0h4) (49)

'y121+1 (hN, +h2M1 +h3R1 +0h*)
Simplifying, we have

Yier = Ve T (WA - v, VNDh+ (WD, - (50)
y2, VM Jh? + (WD, -y2, VR )h + Oh*

Adopting Taylor series expamsion of y,., about
(Xur1s Yurr) tO get

h* h’
Yoez = ¥na T hfnﬂ + ?Dfnﬂ +§ (51)
(D%,., +1,Df, )+ 0h*
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Where:
o =00 Vo)
Df, =1, + 1., 1 (52)
D, =1, + 2 1y +fn2+1fyy

Comparing the coefficient of the powers of hin Eg. 51
and 52, we obtained

W, +V, =1
WO +Vid =% (53)
Subject to the constraints equations
a; =C
by =d, (54)

Here, we have six unknowns with four equation,
choosing the values of V, and W, we obtained.

WV, =W, =1%,C =d =", a,=b,="%Eq. 42 yields

Two step one-stage family of formula

_ yn+1 +%K1
Yn+z-“‘g;““* (55)
1+HTHH1
Where:
K, =hf(x, +th, v, ++K,) (56)
H, =hg(x, +1h, z +1H,)
while for
)V, =% W, =%C =%d=%a, =b,; =%
Eq. 42 becomes
_ yn+1 +%K1
yn+2 - y (57)
1+—21+1 H,
Where:
K] = hf(Xn +%h= Yan +l2K1) (58)

H, =hg{x,,, +1h, z, +iH)

n+1

Next, we access the basic properties of this family of
methods.

THE BASIC PROPERTIES OF THE METHOD

The basic properties required of
computational method for stiff ODEs

consistency, convergence and a-stability.

a good

mcludes
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Consistency: A scheme is said to be consistent, if the
difference equation of the computation formula exactly
approximates the differential equation 1t intends to solve
(Ademiluyi, 2001).

To prove that Eq. 11 is consistent. Recall that

4
yn+k—1 + Z WKI

1=1

4
1 + yn+k—1 Z \/YIHI

1=1

yn+k = (59)

subtract y,., on both sides of Eq. 60

E
Yatka + Z WKI
1=1
E

I+ ¥t Z VH,

i=1

E
[1 + yn+k-1 Z \CH1

i=1

Yore " Yok = ~ ¥tk

(60)

J

E
Yoser T Z WK =¥

i=1

VH

1 1

=

1 + yn+k—1 +

1

R
ZWiKi - y121+k-1ZViHi
i=1
R

1+ Yn+1<-12 ViH;
i1

(61)

But
R
Kl — hf Xn+k-1 + Clh, yn + Zaukj

H (62)

R
H; =hg| X, g +dih. Z, + Zbin
il

i

Ya+k ~ Yotk

R R
Zth Kpak1 T Cih: Yotk T ZaleJ

i=1 i=1

R R
2
_Yn+k—lzvihg Xpik-1 T Zo e +Zbinj

=1 =1

B R
1+ Yntk=1 ZVlhg Xkl + dlh, Zm+k-l ZbUHJ
j=1
(63)

Dividing all through by h and taking limit as h tends
to zero on both sides to have
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1-1111'1'1 Yotk ~ Ytk

R
=0 b = Zwif(xmk-p Yaik)
i=1
2
~¥Yntka Z VI2(X k1> Ykt )
(64)
but
8t Lpir Jm ——f (Xn+k-1, Yn+k—1) (65)
Yo+k-1
then
¥ ¥ .
n+k — Sn=k-1 _
Ltf = ;(Wl +V; )f(xm—k—l, ¥a+k-1 )=
R
but ZWi +V; |=1
L=1

Yr(XnJrk—l) =f (Xn+k-1: Yntk1 ) (66)

Hence, the method 1s consistent.

Convergence: Since the proposed scheme is one -step
and it has been proved to be consistent then it is
convergent by Lambert (1973).

Stability properties: To examne the stability property of
this schemes we apply scheme Eq. 11 to Dalhquist (1963)
stability scalar test imtial value problem.

¥ =Ry, ¥, =Y, €7
to obtained a difference equation
Yotk = M(Z)yn+k-1 (68)
with the stability fimetion
1+ ZW T (1-2A)"
uizy= 2V (LAY (69)
1+ZV (I-ZB) e
Where:
Wi=(W, W, ... W)
VI=(V, Vi V)

To illustrate this, we consider the one-step, one-stage
scheme

o= Yo + Wiky (70)
S ¥o ViH;
Where:
K, =hf (x, te[h, ¥, +a,K)
H, =hg (x,+dh, z,.b,H,) (71)
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Applying Eq. 70 to the stability test Eq. 67 we obtain
the recurrent relation

Yan = H(2Z) ¥u (72)
Where:
1+ W Z(1—-a;2)

1-V,Z(1+ by, Z)

o(z) = (73)

The difference Eq. 72 will produce a convergent and
stable approximation to equation if

1+ Y Z

1-%7

Simplifying the in equality (74), we obtain (o = z = 0).
Hence the scheme 1s A-stable because the mterval of
absolute stability 1s (-co, 0).

<1 {74)

lu(z)| =

NUMERICAL COMPUTATIONS AND RESULTS

In order to access the performance of the schemes,
the following sample problems were solved.

Problem 1: Consider the stff system of ODEs

Y =AY (75)
Where:
1.0 =499 0
A=]0 =50 0 (76)
0 20 —12

With initial conditiony (0)=(2,1,2),0=x=1and
theoretical solution

v, (x) =™ + e 3%
vax) =™ 77)
y3 (X) — 6*5){ _._6*12)(

Using step size h = 0.01 the method 1s implemented
and the results are as shown in Table 1.

Problem 2: The second sample problem considered 1s the
stiff system of mitial values problems of ODEs shown in
Table 2.

05 0 0 0w
0 -10 0 0 |y,
= VO =[1111
y 0 0 90 0 |y, y(O)=[1111]
0 0 0 -100)y,

(78)



Table 1: Numerical result of k-step implicit rational ninge-kutta schemes for solving stiff systems of ordinary differential equations
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X

Control step size (h)

Y1

Y2

Y3

El

E2

E3

0.3000000000D-01

0.1774236000D+00

0.3307246652D+00

0.49778581 55D+00

0.7512863895D+00

0.9951298893D+00

0.3000000000D-01

0.1771470000D-01

0.1046033532D-01

0.6176733963D-02

0.3647299638D-01

0.2153693963D-01

0.1980099667D-+01
0.8291942688D-09
0.1885147337D+01
0.9577894033D-01
0.1791235536D+01
0.11050933794D-10
0.1694213422D-+01
0.1269873096D-11
0.1556933815D+01
0.1425978891D-08
0.1435390902D+01
0.1594313570D-09

0.9706425830D+00
0.3281419103D-07
0.8379203859D+00
0.3422855333D-08
0.7191953586D+00
0.35587255336D-09

0.8869204674D+00
0.8161313500D-05
0.4917945068D+00
0.5357828618D-06
0.2663621637D+00
0.3474808041D-07

6088845946D+00 0.1365392880D+00
0.3655098446D-10 0.2146555961D-08
0.4729421983D+00 0.4953161076D-01
0.3505060447D-07 0.1010194837D-05
0.3709037123D+00 0.1867601194D-01

0.3316564301D-08

0.4481540687D-07

Table 2: Numerical result of k-step implicit rational runge-kutta schemes for solving stiff systems of ordinary differential equations

Y1 Y2 Y3 Y4
X Control step size El E2 E3 E4
0.9950124792D+00 0.9900498337D+00 0.9139311928+00 0.9048374306D+00
0.3000000000D-01 0.3000000000D-01 0.2597677629D-10 0.4145971344D-09 0.2617874150D-05 0.3971726602D-05
0.9708623323D+00 0.9125736684D+00 0.5872698932D-+00 0.5535451450D+00
0.1774236000D+00  0.1771470000D-01 0.3078315380D-11 0.4788947017D-10 0.2005591107D-06 0.2890213078D-06
0.9402798026D+00 0.8811261072D+00 0.33008666911-+00 0.2918382654D+00
0.3694667141D+00  0.1046033532D-01 0.3621547506D-12 0.5454525720D-11 0.1355160001D-07 0.1829417523D-07
0.9144602205D+00 0.8362374949D+00 0.1999708940D-+00 0.1672231757D+00
0.5365278644D+00  0.6176733963D-02 0.4285460875D+13 0.6268319197D-12 0.9915873955D-09 0.1265158728D-08
0.8693495443D+00 0.7557686301D+00 0.8044517344D-01 0.6079796167D-01

0.8400599835D+00  0.3647299638D-01 0.4961209221D-10

0.6922001861D-09 0.5087490103D-06 0.5899525189D-06

CONCLUSION

Generalized Rational runge-kutta methods for the
mtegration of stiff system of ODEs has been proposed.
Theoretically, it has been showed that the scheme 1s
consistent, convergent and A-stable. Numerical results
and theoretical showed that the schemes are accurate and
effective. Also from the above results the error is very
minimal this implies that the scheme is very accurate.
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