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Abstract: Significant efforts have been made in the study of the theory of integrated autoregressive models
and autoregressive integrated moving average models, but less concerted effort has been made in the
1dentification of optimal models which are of great importance in the forecasting of future values. Little attention
has been focused on higher order integrated autoregressive models and autoregressive integrated moving
average models which are always characterized by many parameters and the use of subsetting that elimmate
redundant parameters in these higher order models. This study therefore focuses on identification of optimal
models in higher order integrated autoregressive models and autoregressive integrated moving average models
in the presence of 2°-1 subsets. The parameters of these models were estimated using Marquardt algorithm and
Newton-Raphson iterative method and the statistical properties of the derived estimates were investigated. An
algorithm was proposed to eliminate redundant parameters from the full order integrated autoregressive models
and autoregressive integrated moving average models. To control the parameters of mtegrated autoregressive
models and autoregressive integrated moving average models in the estimation procedure, the elements of 2*-1
subsets (when k=3) was used. To determine optimal models, residual variance, Akaike Information Criterion
(AIC) and Bayesian Information Criterion (BIC) were adopted.
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INTRODUCTION

It may be said that the era of linear time series models
began with such linear models as Yule’s Autoregressive
(AR) models (Yule, 1927). In the past five decades or so,
we have seen remarkable successes in the application of
linear time series models in diverse fields for example Box
and Jenkins (1970), Harman (1962, 1970), Chatfield (1980)
and Anderson (1971, 1977). Nottingham International
Time Series Conference in March 1979. These successes
are perhaps rather natural in view of the significant
contributions of linear differential equation n all branches
of science.

Many empirical time series (for example, stock prices)
behave as though they had no fixed mean. Even so, they
exhibit homogeneity in the sense that, apart from local
level, or perhaps local level and trend, one part of the
series behaves much like any other part. Models wlich
describe such homogenous non-stationary behaviour can
be obtained by supposing some suitable difference of the
process to be stationary. We now consider the properties
of the important class of models for which the dth
difference 1s a stationary process. These models are called
Integrated Autoregressive (IAR) process and Autor-
egressive Integrated Moving Average (ARTMA) process.

In time series modeling, subset models are often
desirable, especially when the data exhibits some form of
periodic  behaviour. In such cases, fitting full order
models often results in the fitted coefficients of some
lags being close to zero. Before considering subset
modeling, consider the problem of fitting a full model of
order k.

MATERIALS AND METHODS

Integrated autoregressive model: Integrated auto-
regressive models (p, d, 0,) is givenas ¥ (B) X,= ¢ (B) V*
X,where, § (B)=1-§, B-$p, B*....-$, B

X=X+ . ¥ X,ate (1)

¢ (B) will be called the autoregressive operator; it is
assumed to be stationary, that 1s the roots of ¢ (B) =0 lie
outside the unit circle. ¥ (B) =V ¢ (B) will be called the
generalized autoregressive operator; it 18 a non stationary
operator. ¥, are the parameters of the ntegrated
autoregressive part of the model and the e, are error terms.
The emor terms e, are generally assumed to be
independent, identically distributed variables sampled
from a normal distribution with zero mean.
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Autoregressive integrated moving average moodel:
In statistics, an Autoregressive Integrated Moving
Average (ARIMA) model 18 a generalisation of an
Autoregressive Moving Average or (ARMA) model.
These models are fitted to time series data either to
better understand the data or to predict future points in
the series. The model 1s generally referred to as an
ARIMA (p,d,q) model where p, d and q are integers
greater than or equal to zero and refer to the order of the
autoregressive, integrated and moving average parts of
the model, respectively.

Given a tume series of data X, where t 1s an mteger
index and the X, are real numbers, then an ARTMA(p,d, q)
model isgivenby T (BY X, = ¢ (B) V' X, = 6 (B)e,

Where:

¢ @) =1-pB-p,B .-, B andB (B) 1-6,B-6, B .0
Bq

q

X=X+ . +¥,. X debe, -.O,e, (2

Y. are the parameters of the autoregressive part of the
model, the B, are the parameters of the moving average
part and the e, are error terms. The error terms e, are
generally assumed to be independent, identically
distributed variables sampled from a normal distribution
with zero mear.

Description of an algorithm for fitting of subset
integrated autoregressive and autoregressive integrated
moving average models: We fit full integrated
autoregressive and autoregressive integrated moving
average models of various orders and choose that model
for which Akaike Information (AIC) is minimum. Let
average model be p+d+q and let the models be X, = TX,
+.. AP X, e denoted by IA (pd) and X, =T, X,
+oo ALK teBe, -0, e, denoted by ARIMA
(p.d,q), respectively.

Let the mean sum of squares of the residuals be **
and its Akailke Information (AIC) be equal to ATC(1) for
integrated autoregressive model and for autoregressive
mtegrated moving average model, let the mean sum of
squares of the residuals be 6°" and its (AIC) be equal
to AIC. The estimation of models is done by using
Malquardt algorithm and Newton-Raphson Tterative
method. Having fitted the full models, we can now fit the
best subset models by considering the 2%-1 subsets using
the fitted full models with minimum AIC. We consider the
elements of 2%-1 subsets using the approach of Hagan and
Oyetungi (1980) and choose that model for which AIC 1s
minimum. Let the best subset Integrated Autoregressive

model be X, = VX .+ AP 0¥ e, Where my, my,,
..... my,, are subsets of the integers (1, 2, ..., ptd). Let the
mean sum of squares of the residuals be & and the AIC
value be AIC(2), AIC(2)<AIC(1). Also let the best subset
autoregressive integrated moving average model be X, =
Y Xt A X te 0,0 -.-0,, e, where n, n,
...... N4 K.k are subsets of the mtegers (1, 2, ...,
pt+d+q). Let the mean sum of squares of the residuals be §7¢Y

and the ATC value be ATC (22), ATC (22)<ATIC(11). This is
owr subset integrated autoregressive and
autoregressive mtegrated moving average models.

subset

Estimation technique: The estimation of the parameters of
the models under consideration is as follows:

X=X +.... Y X i te (3)
e =X —yX_ —... WK g
X =yX .. +1|Jp+df>(t,p,d+et -0e,_, —...—qut,q
e =X, WX, —.-w X ,t+0e +..+0e (4)

Minimizing the function

QGI=3 ¢

t=ml

with respect to the parameters (w,,w,.....w, 6,
B0,...., 0. Let G" = (w,,w, ... w :6,, 6,,...., 6,). For
convenience, we shall write,

G1 = Wh:Gz = W22:--->Gk = Wkpa
Gy, =0,...G, =6,

kel —

Where, R=k+m
The partial derivatives of Q(G)are

iy
G, = 1D _yye, o (5)
G “&Tdg,

d°Q(G 5 d
HiG)= dG(.chG.) B 2;[%}

g 2
de, |, 236, de, .
aG, " &% 4G da,

where the partial derivatives satisfy the recursive
equations

(6)

e 5, 7
dy,
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=X (p=2.3,..k (8
dy, (p )
de, _
del t—1
de
d@t =e,_,(q=23...m) @

In evaluating the second order partial derivatives we
approximate
5[ de, | de
H(G)=2 L=
© Zf{dGJ(dGJ

as 18 done in Marquardt algorithm.

Now let VHG)= [ dSéG) , d(?éG) e . dSéG)J
and let H(G)= dZQ(G),
dG,dG;

Expanding V (&) near G = G in a Taylor series, we obtain
0=V (GH+H (3) (G-3)

Rewriting this equation, we get (G-G) = -H ' (G)V(Q)
and thus obtain the Newton-Raphson iterative equation

gt = gl Hfl(G(k) )V(G(k))
G® =G0 L HYGYWG®) (10)

Where, G¥ is the set of estimates cbtained at kth stage of
iteration. The estimates obtained by the above iterative
equations usually converge. For starting the iteration, we
need to have good sets of initial values of the parameters.

Residual variance: Residual variance or unexplained
variance 15 part of the variance of any residual. In analysis
of variance and regression analysis, residual variance is
that part of the variance which cannot be attributed to
specific causes. The unexplammed variance can be divided
mnto two parts. First, the part related to random, everyday,
normal, free will differences mn a population or sample.
Among any aggregation of data these conditions equal
out. Second, the part that comes from some condition that
has not been identified, but that is systematic. That part
introduces a bias and if not identified can lead to a false
conclusion.

Akaike Information Criteria (AIC): The Alkaike
Information Criterion (AIC) (pronounced ah-kah-ee-keh),
developed by Hirotsugu Akaike (1971) and proposed in
Alkaike (1974) is a measure of the goodness of fit of an
estimated statistical model. It 1s grounded in the concept
of entropy. The AIC is an operational way of trading off
the complexity of an estimated model against how well the
model fits the data.
In the general case, the AIC is

AIC = 2k-2In (L)

Where, k 13 the number of parameters and L 1s the
likelihood function.

Over the remamder of this entry, it will be assumed
that the model errors are normally and independently
distributed. Let n be the number of observations and RSS
be the residual sum of squares. Then ATIC becomes

AIC = 2k+nln (RSS/) (1)

Increasing the number of free parameters to be
estimated improves the goodness of fit, regardless of the
number of free parameters in the data generating process.
Hence AIC not only rewards goodness of fit, but also
includes a penalty that is an increasing function of the
number of estimated parameters. This penalty discourages
overfitting. The preferred model is the one with the lowest
AIC value. The AIC methodology attempts to find the
model that best explains the data with a minimum of free
parameters. The AIC penalizes free perameters less
strongly than does the Schwartz.
Bayesian information criterion: In statistics, the
Bayesian Information Criterion (BIC) is a statistical
criterion for model selection. The BIC is sometimes also
named the Schwarz criterion, or Schwarz Information
Criterion (SIC). Tt is so named because prof. Gideon E.
Schwarz gave a Bayesian argument for adopting it.

Let:

n = The No. of observations, equivalently, the sample
s1ze.
k = The number of free parameters to be estimated. If

the estimated model is a linear regression, k is the
number of regressors, including the constant.

R3S = The residual sum of squares from the estimated
model.

L = The maximized value of the likelihood function for
the estimated model.
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The formula for the BIC 1s:
BIC_(Q.IHL + kIn(n)}
n

Under the assumption that the model errors or
disturbances are normally distributed, this becomes:

BIC—II{@}r k[m—nj
n n

Given any two estimated models, the model with the
lower value of BIC is the one to be preferred. The BIC is
a decreasing function of R3S, the goodness of fit and an
mereasing function of k. The BIC penalizes free
parameters more strongly than does the Akaike
Information criterion.

(12)

RESULTS AND DISCUSSION

The real series used was sunspot numbers which was
considered at three levels that is when t = 50, 150 and 250.
This series is a non-stationary series and models
considered applied. The choice of t was to allow us to
have the optimal models. The optimal models identified
are discussed m turmn.

Fitting of full and subset ARTMA (p, 1, 0): ARTMA (p, 1,
0) of orders 1 to 10 was fitted using the real series. The
choice of the best order is made on the basis of AIC and
BIC and the mimmum AIC and BIC 1s the best model and

X, = 0.165220X,,-0.469042%, -0.1539553, -0.315054%, -
0.275924, , -0.366829 X, , -0.324887 X, e,

There are 27-1 = 127 possible subsets. The choice of
the order is made on the basis of minimum AIC and BIC
and having considered the 127 possible subsets, it was
found that AIC and BIC is mmimum in the following model

X,= 0314548X,-0.458429X,,-0.302114X,, -0.220568X,,
-0.86150X, e,

Fitting of full and subset ARTMA (p, 1, (1,2,3)): ARIMA
(p, 1, (1, 2, 3)) of orders 1 to 10 were fitted using the real
series. The choice of the best order 1s made on the basis
of AIC and BIC and the mimmum AIC and BIC is the best
model and this was found whenp=6andq=1, 2, 3. The
fitted model is:

X,= 0.872827X,,+0.006059X, ,-0.528694%+0.069292X, ,
-0.126321%,, -0.0031 46X, , -0.964514e,, -0.704616e,
+0.884318e, e,

There are 2°-1 = 63 possible subsets. The choice of
the order is made on the basis of minimum AIC and BIC
and having considered the 63 possible subsets, it was
found that AIC and BIC is mmimum in the following model

X,= 0.872827X,,+0.006059X, ,-0.5286943+0.069292X, ,
-0.126321%,., -0.0031 46X, , -0.964514e, , -0.704616e,

this was found when p = 7. The fitted model 1s: +0.884318e, +e,
Table 1: Full TA and ARTMA models at different levels of't

T=>50 T =150 T=250
Time P11, P11, P 1, P 1, P11, P11,
Model P, 1,0 P 11 (1.2) (1.2, 3 P, 1.0 P, 11 (1,2) 1,2. 3% P, 1,0 P 11 (1.2) (1, 2, 3
R? 0.59 0.62 0.56 0.70 0.52 0.53 0.51 0.56 Q.50 Q.50 0.52 0.53
EZ 0.52 057 0.51 0.63 0.50 0.51 Q.50 0.53 049 049 0.51 0.52
RV 204.5 200.2 245.3 153.4 219.8 213.9 217.2 201 308.5 308.6 306.4 284.8
S.E 17.09 16.23 17.30 15.02 15.63 1547 15.53 15.11 18.19 18.22 18.21 17.90
AlC 8.67 854 8.64 8.44 8.38 8.37 838 834 8.67 8.68 8.68 8.65
BIC 8.96 878 8.84 8.81 853 8.54 854 854 879 881 8.83 8.81
F 8.32 12.56 12.83 10.07 24.19 21.67 21.87 18.62 32.72 28.53 25.58 24.73
P 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Table 2: Subset IA and ARIMA Models at Different Levels of t

T=>50 T =150 T =250
Time P 1, P 1, P 1, P 1, P 1, P 1,
Model P, 1,0 P 11 (1.2) (1.2, 3 P, 1.0 P, 11 (1,2) 1,2. 3% P, 1,0 P 11 (1.2) (1, 2, 3
R? 0.57 0.62 0.56 0.70 0.51 0.53 0.53 057 Q.50 0.51 0.52 0.53
EZ 0.52 0.59 0.51 0.63 0.49 0.51 0.51 0.54 048 048 0.49 0.50
RV 224.5 2024 245.3 153.4 225.2 213.9 222.0 197.5 300.5 308.7 306.4 204.8
S.E 17.19 15.91 17.3 15.02 15.70 1542 15.48 14.93 18.18 18.20 18.21 17.90
AlC 8.64 846 8.64 8.44 8.38 8.36 835 831 8.67 8.67 8.68 8.65
BIC 8.4 8.62 8.84 8.81 848 8.5 845 849 877 879 8.83 8.81
F 12.38 21.66 12.83 10.07 35.13 2547 38.6 21.77 38.1 32.69 25.58 24.73
P 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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This coincides with the full model: Elements of 251
subset whenk =3 thati1s 1; 1, 2and 1, 2, 3 were used in
full and subset models in the Table 1 and 2 the optimal
model was recorded att = 50w ith model ARIMA (p, 1,
(1, 2, 3)) with lowest residual variance and highest R*. For
the integrated autoregressive models the optimal model
occwrred at t = 50 as well with model TA (p, 1, 0) with
lowest residual variance. Because of the elements of 21
subsets, we saw in our result that full ARTMA and subset
ARIMA coimncide which 1s not always the case. The study
is saying that when these elements of 2°-1 are used we
should stop at the fitting of the full ARTMA and the
rigour of fitting the subset will not occur again. Also we
have seen from our findings that working with smaller
series will not deny us of having optimal model and finally
ARIMA models perform better that IA models.

CONCLUSION

We have seen m this study the impact of elements of
251 subsets in the models considered. Also, we have
been able to 1dentify optimal models which are of great
importance in the forecasting of future values. We have
considered models of higher order and have been able to
remove the redundant parameters.
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