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Abstract:

In this study we present a collocation multistep method for Integration of first order ordinary

differential equations. Itis consistent (order seven) zero stable and convergent. When compared with existing

multistep method, it is found to be more accurate.
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INTRODUCTION

The solution of initial value problems of ordinary
differential equations of the form

Y =1fxy).y (x,)=y, ()

Where, v, f=R" x° [a,b], has been discussed by various
researchers among them are TLie and Norsett, (1989),
Onumanyi et al. (1994, 1999), Onumanyi and Yusuph
(2002), Sirisena (2004), Lambert, (1973) and Gear, (1971).
However experience has shown 1n Lie and Norsett (1989)
and Onumanyi ef af. (1994) that the traditional multistep
methods mcluding the hybrid ones can be made
continuous through the idea of multistep collocation.
These earlier works have focused on the construction of
continuous multistep methods by employing the multistep
collocation. The continous multistep methods produce
piecewise polynomial solutions over k —steps [x,, X,.,] for
the first order systems of Ordinary Differential Equation
(ODEs). Sirisena et al. (2004) developed a continuous
new Butcher type two-step block hybrid multistep method
for problem (1). The results obtained showed a class of
discrete schemes of order 5 and error constants ranging
from C;=1.45%10° toC,=1.790 »10™. Inthis study, we
propose a continuous Butcher type three- step block
hybrid method employing multistep collocation approach,
which yields a class of 2 discrete schemes of order 7 with
error constants.

27 o 155525
777420 ® 1273724928

5 =

for solving problem (1.1).

DEVELOPMENT OF THE METHODS

In this study we discussed the development of
contimious scheme and its discrete schemes using
Sirisena (1997) where a K-step multistep collocation
method with m collocation points was obtained as
follows:

o= S, (yix, )+ thZ_ BIR,7X)y (2

1=0

Where:

trm-1

o ()= 3 o 3)

1=0

t+m-1

hB,x)= > hp, ., x' 4

are the continuous coefficients of the method and x,.;, j =
0, 1...t-1 in (2) are t (O<t<k) arbitrary chosen nterpolation
pomts from (x,, ... X,u) and . X; j=o0,1...,m-2 are them
collocation pomts belonging to {x,..., X}

To determine ¢ (x) and [3; (x), we use a matrix equation
of the form

DC=1 5

Where,

I is an 1dentity matrix

While D ad C are the matrices defined as in Sirisena
(1997
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2 t+m-2
1 x, X .
2 t+m-2
1 X'n+1 Xn+1"' Xn+1
2 t+m-2
D= X st Xn.;.Tfl Xnsio1 (6)
01 2%, (t+rm2xhm?
= 3
.01 2%, (B+m)RT |
and
o O ... o, hp, ...
0.1 1.1 t-1,1 0,1 th—l,l

Oy g oy hp, ;.. hB._,,
c=| . : : : ’ (N

(e} (e} hBu,Hm"'thH’Hm

o, t+m O"’l,t+m"' t—1,t+m

The columns of the matrix C = D consists of the contimuous coefficients, i.e.,

oix)j=o, 1. k-land f(xxnj=01... k1.

In this study
k=1=3,m=6,X, =X,X. X, =X, X, =X,
Then Eq. 2 becomes
Y00 = 0, (X)y, + 04 (0¥, + 0 (y+ h| BLOOF, + B, (O, +B,0Of, . + By0O, 5 + By, (0 5| ®)
Thus, the matrix D in (6) becomes
1 X, x x X x %! x! 1
1 Xn+1 X‘rzﬁ-l X'131+1 anl Xfl+1 Xg+1 X'Z-H
1 Xn+2 Xi+2 X131+2 Xi+2 Xr51+2 X§+1 XZH
0o 1 7% BXE 4xi SXi 6xi 7XE ©)
D= "
0 1 2X-n+1 3Xr21+1 4Xn+1 5Xi+1 6X151+1 7Xn+1
0 1 2Xn+2 3X‘121+2 4X131+2 5X:+2 6X1i+2 7Xr61+2
0 1 2X'n+3 3Xn+3 4X131+3 5Xi+3 6Xi+3 7Xn+3
0 1 2zZx 6
L n+ 3 3Xn+§/ 4Xn+;/ 5Xn+/ 6Xn+/ Ty |

We obtained C =D in (9) to determine a;(x); 1= 0{1)2 and hp, (x); 1=10, 1, 2, 3, 52 in (8) as follows:

o, (x)= 2468117[ 20115h°(x — x,)* +3918%h* (x — x_ )’ — 32910h*(x — x, ) +14169h’ (10)
(x-x, )" =3065h(x - x,)° + 264(x - x,)” + 2468h’ |
1
o, (x)= W[JSON (x-x,)" +6148h" (x — x,)? —10005h° (x-x ) + 6156h*(x-x ¥’ a1

~1670h(x-x_ ) +168(x —x_) ’]
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o, (x)= 2468}17 [20835}1 (x-x_) — 6378h"* (x — x_)’ + 72930h’ (xx,)" — 38793h*(xx_ )’

+9745h(x-x, ) - 936(x - x,)” |

1
hp, (x)= ———
P. () 37020h°
+61199h°(xx_ )’ ~12782h(x - x,) ﬁ+1076(x-xn)7}

hp () = 7404hﬁ [

—21483h(xx, )’ —1972(x - x,) |

hp, (x)= hﬁ

—6272h(x-xn) + 628(x — xn)q

[ 1125007 (xx, )" +35645h" (x — x_ V¥ — 42556h° (x-x )" + 23805h* (x-x Y

hB,(x) = m[—QSOhS (x-x_ )" +3308h* (x —x_ ¥ — 428%h* (x-x_)' + 2666° (x-x_)’ - 797h

(xx,)°+92(x—x,) 7}

hp,, (x) = hé [92 16h° (x-x, )" —30464h* (x — x_)’ + 38400h (x-x )" — 22976h*(xx, )’ +

6528h(x—xn) ~704(x-x,)

Putting Eq. 10-17 into Eq. &, we obtained a continuous scheme.

yix)= 2468h7[ 20115h° (x-x_ )" + 39189h"* (x — %)’ — 32910h°(x=x ¥ +14169h*(x=x )

~3065h (x-x, )" +264(x — x,) "+2468h |

Yn+1
17h”

(xx, ) +168(x—x,) 7}

+ PlOOh5 (x-x, ) +6148h" (x —x_ )’ —10005h° (x-%_ )" + 6156h*(x-x )’ —1670h

+ M@ﬁ[zosth (x-x_)" — 63781h"(x — x,)’ + 72930h " (xx )* - 38793h° (xx_ )’

f
+9745h (xx ¥ +936(x—x )'+—=2——(37020h°(x — x
(xx,) (x=x,) 37020hﬁ( (x-x.)
—136364h° (x-x_ )? + 20053Th* (x-x_ )° —150680h* (x-x_)™* + 61199h*(x — x,)°

—-12782h" (x-x _)* +1076(x-x_ )’ t2

hﬁ[ 62280h’ (x-x_)* +182932h* (x —x )’

—186147h° (x-x, ) + 90946(x-x, ¥ — 21483hi{xx, ) +1972(x - x,) 7}

[37020116 (x-x,)—136364h° (x — x, )" +200531h* (x=x, V¥ - 150680h° (x-x, )'

68220h° (x-x_)* +182932h* (x — x_ )’ +1861147h* (x-x_ )" — 90946h° (x-x_ Y’

(12)

(13)

(14)

(15)

(16)

(17)
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v hﬁ[ 11250h7(x-x )" +35645h* (x-x_ ¥ — 42556h° (x-x_ )" + 23805h* (x — x )’

—6272h(x —x )* + 628(x-x )’ 3 980h° (xx
(x-x, )+ 62800x,) ] e[ )

+3308h* (x-x_ ¥ + 4280h°(x=x ) + 2666h° (x-x_ ) — 797h(x - x,) ﬁ+92(x-xn)7]

+ 921h’ (x-x,)* — 30464h* (x-x_ Y’ + 38400h’ (x-x, )" — 22976h* (x - x
el [o21h (e, (%, ) (xx, ) (x-x,) as)
+6528h(x - x, ) - 704(x-x,)” |
On evaluating (18) at x = x,,; and x = X5, , we obtained the following 2 discrete equations.
783 135 31 h
-— —= ——y, = ~234f, - 2970f,,, —810f,,, + 2790f, , + 13824f, (19
Yn+3 617Yn+2 617Yn+1 617Yn 18510[ n n+ n+2 n+3 :|
and
4077 29000 124875 h
Vo y, - v+ V.., = [-990f, ., +16125F,,, + 67500f,,, ~1125f, , +32640f, ., | (2O
¢ 157952 157952 157952 157952

The schemes (18) and (19) has order p =7, error constants.

15525
—————— an
1273724928

= - , Tespectively

777420

Since the order p > 1, then the Eq. (19) and (20) are consistent as in Lambert (1973). Equation 19 and 20 are two
equations with four unknowns. For the two equations to constitute two member block hybrnid method, we need to
eliminate two unknowns either by using existing standard one-step method or using the analytical solution or develop
two more equations. What we adopted is discussed in the next section.

STARTING VALUES

We adopted the explicit sixth order Runge-Kutta scheme in (Lambert, 1973) to evaluate y,.; j=1 and 2;n=o 1e.
h 21)
Youi = Yarja + %[tllk1 + 216k, + 27k, + 272k, + 27k, + 216k, + 411(8] (

Where,
k; (s Yoy 1)
ky = X, + % Yaoup + Yo
Ky = P, + % Yoy + W Oy 43k,
= f{x, + 5,0+ M0 + 3k, + 4k
o= X, + Yy, + Y (5K, + 27k, - 24k, - 6k,)}

n

X, +55 V., + %, (~183k, + 678k, — 472k, — 66k, + 80k, + 3k )}

7 n

k= £
ks =1
k, =fix,+ % v, + %22k — 981k, + 867k, — 102k, + k,)}
o=
k=1

£§x, +h, ¥, + 5 (716k, — 2079k, + 1002k, + 834k, — 454k, — 9k, + 72k, )} (22)
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Table 1: Comparison of Errors

X Sirisena et al. (2004) Proposed scheme
0.1 2.0x10° 2.1%1010
0.2 2.0x10° 2.2x1010
0.3 1.0x10° 6.0x10r10
0.4 2.0x107° 1.0x10:10
0.5 1.0x10° 4.1x10°
0.6 3.0x10° 7.0x1010
0.7 2.0x10° 1.5x10°
0.8 3.0x10-9 7.0x1010
0.9 3.0x107° 1.4x10°
1.0 3.0x10° 8.0x1010

Table 2: Comparison of Errors

X Ririsena et al. (2004) Our new method
0.1 2.0x10° 0.0

0.2 2.1x10° 0.0

0.3 1.7x10° 6.0x101°
0.4 0.0 2.0x10°1
0.5 6.7x10° 7.0x10°1
0.6 0.0 1.0x101°
0.7 1.0x10° 8.0x101°
0.8 0.0 2.0 x101°
0.9 0.0 9x101°

1.0 0.0 4.0x10!°
Table 3: Comparison of Errors.

X Sirisena et af. (2004) Our method
0.1 3.6x10* 1.7x10°
0.2 1.5x10¢ 1.6x10°
0.3 5.9x10° 9.3x10°
0.4 1.6x10° 4.6x10°
0.5 4.3%10° 1.8x10¢
0.6 212107 4.2%107
0.7 5.7¢107 1.8x107
0.8 1.6%10° 2.3x10°
0.9 5.1x10° 3.8x107
1.0 2.8x10° 3.2x107

CONVERGENCE AND STABILITY ANALYSIS
In this study, we discuss the stability and conver-
gence properties of the schemes (19) and (20).
Zero stability of (19):

783, 135 31
PlEg|=8 - =g+ =4+ =0
El 617° 617 617

g =1 & =0.4285and &,~ 0.1587

Since £, #£, #E, and

|E,| < |E,| < |E;] < 1, then the method is zero stable
according to Lambert (1973), Zero stability of (20)

124875, 29000 ., 4077
15795 ° 157952

157952

2E)=E5 -
£ =1, & =0.0258and &, = 0.2094

Since, §, #&; #&;

The method is zero stable according to Lambert
(1973). According to Lambert (1973) the necessary and
sufficient condition for a linear multistep method to be
convergent are that it be consistent and zero stable.
Therefore, proposal schemes are convergent.

NUMERICAL EXPERIMENT

In this study, we use the proposal schemes (19) and
(20) with Eq. 21 and 22 as starting values to solve the
examples stated below. The errors arising from the
computed and theoretical values are compared with
Sirisena ef al. (2004) as shown in Table 1-3.

Example 1

V=-y yl0)=1,0<x<1,h = 0.1

y(x) = e-x
Example 2

v =xvy y(0)=0,0<x=1,h = 0.1
y(x)=x+ex-1

Example 3

v =8(y-x)+1, y(0)=2,0<x=<1,h = 0.1
v(x)=x+2e™

From the above presented tables, our new method 1s
more accurate when compared with Sirisena ef al. (2004).
The proposed method uses two difference equations per
step while Sirisena et al. (2004) used three difference
equations per step.

CONCLUSION

Our new proposed scheme are consistent and
convergent. And it compares favourably with the existing
scheme.
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