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Abstract: This study presents a particle swarm optimization algorithm to optimize the performance of the smart
antenna system. All particles of the population are assessed to cost function chosen to be equal to the mean
square error between the array output signal and a reference signal considered to be similar to the desired
signal. The results obtained show that particle swarm optimization algorithm has a small mean square error and
mmproved output signal reselution than those of two well known adaptive algorithms namely, Recursive Least
Square (RLS) and Sample Matrix Inversion (SMI) algorithms.
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INTRODUCTION

Smart entenna 1s an antenna array that can emphasize
the signal of interest and minimize the interfering signals
by adjusting or adapting its own beam pattern. Smart
antennas have several benefits in the field of wireless
communication such as: mnproving system capacity,
reducing sensitivity of non ideal behaviours, providing
robustness to system perturbation as well as separate the
recewved signals spatially with aid of Spatial Division
Multiple Access (SDMA) concept (Liberti and Rappaport,
1999). Smart antennas have recently large number of
applications such as: mobile communications (Liberti and
Rappaport, 1999), software radio (Reed, 2002), Wireless
Local Area Network (WLAN) and Metropolitan Area
Network (WMAN) (Stallings, 2000), radar systems
(Skolnik, 2001), satellite communication (Jeng and Lin,
1999) as well as wide band Code Division Multiple Access
(CDMA) (Ahn and Kim, 2009). Particle Swarm
Optimization (PSO) algorithm is formulated by Edward and
Kennedy.

They had borrowed the social behaviour of ammals
to solve the optimization searching problems (Haupt and
Haupt, 2004). PSO algorithm is approximately similar to
Genetic Algorithm (GA) but it is much simpler. Due to its
sunplicity, many problems that solved by GA are modified
to solved by PSO algorithm. In the last few years, there
were many attempts to use this technique in
electromagnetic applications.

Robinson et al. (2002) have proved that PSO 1s able
to accomplish the same results of GA to design profile
corrugated hom antenma. Gies and Rahmat-Samn (2004)
have used PSSO algorithm to solve difficult reflector
antenna synthesis problems. Jin and Rahmat-Samui (2005)
have optimized the geometric parameters of multiband and

wide band patch antenna using PSO algorithm to achieve
a desired performance. Papadopoulos et al. (2006) have
used PSO algorithm to find spatial and feeding
configuration of array elements of switch beam planer
antenna array. Pantoja et al. (2007) have optimized the
design of log-periodic dipole array with aid of PSO
algorithm. T et ol (2008) used PSO to optimize the
antenna array pattern. Gangopadhyaya et al. (2009) have
determined accurately the resonant frequency of
rectangular aperture-coupled microstrip anterma using
PSO algorithm. Chamaani et al. (2010) have obtained
using PSO, optimum trade off between side lobe level and
beam width in time domain for ultra-wide band antenna
array.

In this study, a particle swarm optimization algorithm
1s used to adapt the weights of the adaptive smart
antenna system. The optimal weights resulted at each
sample of time (iteration) are used to orient the main beam
of the smart antenna radiation pattern in the direction of
the desired signal and cancel the interfering signals by
pointing nulls i thewr directions. As a matter of
comparison, the simulation results of PSO algorithm are
compared with that of Sample Matrix Inversion (SMI)
algonthm and Recursive Least Square (RLS) algorithm. In
this study, the necessary equations used to realize and
identify adaptive smart eanterma are given. The basic
theory of PSO algorithm is also presented.

SMART ANTENNA SYSTEM

In an M-elements adaptive array antenna as shown
in Fig.1, output signal y(n) is given by (Godara, 2004):

y(m) = w (n) x(n) @)
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Fig. 1: Simple smart antenna

where, w(n) and x(n) represent the weights vector and
mput signals vector, respectively. The symbol H denotes
the complex conjugate transpose of the vector. It is
shown in Fig. 1 that the signals commg from all elements
at a time instant (n) are multiplied by the complex weights
and summed to form the array output at that mstant of
time. A reference signal (1) identical to the desired signal
(s,) 18 used to control the weights of array elements. If the
antenna receives a desired signal s,(n) and K interfering
signals s,(nn) with the presence of random noise N then:

K
x(n)=s,(n)a, + ¥ s, (n)a, + N 2
k=1
Where:
N = (Mx 1) matrix
a, = Steering vector
(Godara, 2004):

of the kth signal given by

1

e]ﬁdcnsd)k

ak — eJZBdEDSd’k (3)

ej(M—l)ﬁd o5y,

Where:

(P =2n/A) = Wave number

A = Wavelength of the desired signal

d = Distance between every two adjacent
elements

D, = Azmuth angle of the kth signal

PARTICLE SWARM OPTIMIZATION
ALGORITHM IN SMART ANTENNA SYSTEM

PSO algonthm retamns the conceptual simplicity of GA
whereas, it is much easier to implement and apply to
design problems with both discrete and contmuous
design parameters (Papadopoulos et al, 2006). This

technique can be used to optimize the array output by
making 1t approximately similar to the desired signal.
When the desired signal direction is known the phase of
weights can be deduced from the steering vector of the
desired signal a, as:

[w|
‘W2|ejﬁdcns¢>0
W = ‘Wa‘eﬂﬁdcus@o (4)

|WM |ej(M —DBd cos,

such that the main beam can be oriented in the direction
of the desired signal. By optimizing the magmtudes of the
weighs, nulls can be pointed in the direction of interfering
signals. In this case, the particle (par) of the PSO
algorithm can be expressed as (Haupt and Haupt, 2004):

par =|w,| [w,| . [wy] )

The cost function (cost) can be selected to be the
Mean Square Frror (MSE) between the array output signal
and the reference signal which 1s assumed to be similar to

the desired signal such that:
cost = ‘r(n) -w' (n)x(n)‘2 (6)

PSO algorithm is usually started by assuming the
population size to be equal to P where, P represents the
number of particles in the population. Consequently, the
initial population (pop) can be expressed by (PxM)
random matrix.

Each element in each particle moves about the cost
surface with a certain velocity. Therefore, the initial
velocity matrix (vel) can also be expressed by (PxM)
random matrix. Each particle is then assessed to the cost
function. The minimum cost and the particle which carries
index equal to the minimum cost mdex can be considered
to be the initial global cost (gecost) and initial global
particle (gpar), respectively.

While the local best cost vector (Icost) and the best
local population matrix (Ipop) are initialized by equalizing
them with the cost vector and the population matrix
respectively. When the mitialization process 1s over, the
updating process starts. At first, the velocity is updated
according to the following equation (Haupt and Haupt,
2004):

vel, (m,n) = vel. (m, n) + ¢, 1, (Ipop, (m, n) —
pop; (m, m) + ¢, < 1,(gpar(n) — pop, (m, n}j)
(7
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where, ¢, and ¢, represents a learning factors, 1, and
r, denotes mdependent uniform random numbers, 1
denotes the current iteration, m=1, 2, .., Pandn=1, 2, ..,
M. The particle position can be updated using the
following expression (Jin and Rahmat-Samii, 2005):

pop,, = pop, + vel At (8)

where, At denotes the time interval between two
consecutive iterations which assumed to be unity. The
new population 1s assessed to the cost function. The new
best local cost vector can be updated from the following
equation:

lecost,, (m) = minimum({]l cost,(m), lcost,,,(m) )

While the new best local population matrix includes
the particles corresponding to the minimum cost that
results from Eq. & In other words, the new best local
population can be formulated as:

pop,,,(m,:) cost,,, (m) =lcost,(m) (10)

Ipop,,,(m,:) = Ipop, (m.)

otherwise

Subsequently, the mimmum value of the best local
cost is compared with the global cost. If the global cost is
less than the mimimum best local cost then the global cost
and the global particle vector remain as they are otherwise
the global cost and the global particle vector take the
values of the minimum best local cost and the best local
particle corresponding to it, respectively. The previous
process continues until an acceptable global cost value is
achieved. When the aforesaid scenario is over the
optimum particle will be the global particle.

RESULTS AND DISCUSSION

A smart antenna system with six omni-directional
antenna elements (M = 6) and half wavelength
inter-elements spacing is considered here to implement
the proposed algorithm. The desired signal 1s assumed to
arrive at @. = 50°. Tt is also assumed that one interfering
signal 1s received at @, = 120° with the presence of white
noise. If the sampling frequency f, is taken to be equal to
(100 f) where, f denotes the frequency of the desired
signal, the instantaneous value of the desired signal can
be written as:

2m

s,(n) =cos (ZTmft:—s) =cos (ﬁ) (1D

while the mterfering plus noise signal at each iteration
T(n) for 100 iteration is given by (I(n) = randn (1,100)

where, randn denotes a Matlab function that generates
random numbers of normal distnbution. The
instantaneous value of the signal vector is then given by:

x(n)=s (n)a, +I(n)a, (12)

The instantaneous value of the weight vector can
easily be found from Eq. 4. If the population size P = 10
then the initial population matrix is set to be (pop = rand
(P, M)) where, rand denotes another Matlab fimction
generates uniform random numbers and the initial velocity
matrix (vel = rand (P, M)). These random particles are
assessed to the cost function expressed in Eq. 6. Now, the
best local cost (lcost) vector and the best local population
matrix (Ipop) take the wvalues (cost) and (pop),
respectively. The best global cost can be given by
(g cost = min (lcost)) where, min is a Matlab function
denotes the mimimum value. The best global particle 1s the
particle corresponding to the minimum cost. Before
starting, let the values of ¢, = 1 and ¢, = 3. The updating
process is begins by updating the velocity matrix using
Eq. 7 with 1, = rand (1) and 1, = rand (1). The population
matrix is updated using Eq. 8 with At=1. With aid of the
Matlab function min, Eq. 9 1s applied to update the best
local cost. As a result, the best local population is
updated using Eq. 10. The mimmum local cost 1s compared
with the global cost then set the global cost to be equal to
the lowest value and the global particle to be equal to the
particle corresponding to the selected cost. The updating
process continues until the global cost become less than
or equal to certain cost margin (which assumed to be
107%). After that the optimum weights vector of the nth
sample of time can be found from Eq. 4 where the
magnitudes of the weights are taken from the global
particle. The same scenario 1s repeated for (n+1)th sample
of time. The desired signal and the array output signal are
shown in Fig. 2. Figure 2 shows the two signals are similar
for all samples of time.
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Fig. 2: The waveform of; a) the desired signal and b) the
array output signal using PSO algorithm
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Fig. 3: Mean square error at each iteration using the PSO
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Fig. 5: The deswred and array output signal of RLS
adaptive algorithm

Figure 3 shows the Mean Square Error (MSE) at each
sample of time and it is found to be <107 for all samples
making the array output signal similar to the desired
signal. Figure 4 shows the resulted normalized array factor
of the last sample of time. To highlight the merit of PSO
algonthm, 1t 1s compared with two well known adaptive
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Fig. 6: The deswed and array output signals of SMI
adaptive algorithm
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Fig. 7: The mean square error of RLS adaptive algorithm
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Fig. 8: The maean square eror of SMI adaptive algorithm

algorithms namely, Recursive Least Square (RLS) and
Sample Matrix Inversion (SMI) algorithms (Godara, 2004).
Tt is shown in Fig. 5 and 6, the above two adaptive
algorithms have bad resolution compared with that of
the PSO algorithm.

Figure 7 and 8 expose the problem of high mean
square error of the two adaptive algorithms compared with
that of PSO algorithm.
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CONCLUSION

Particle swarm optimization algorithm has been
proposed to optimize the performance of a smart antenna
system. All particles have been assessed to cost function
chosen to be equal to the mean square error between the
array output signal and a reference signal considered to
be the siumilar to the desired signal. The simulation results
show that PSO algorithm is superior to the classical
adaptive algorithms such as recursive least square
algorithm and sample matrix inversion algorithm due to its
low mean square error which is found to be <107 and its
high output signal resolution.
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