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Abstract: There has been considerable recent interest in defining a Hardware Abstraction Layer (HAL) to
facilitate code reuse mn the signal processing subsystems of software-defined radios. HDL for FPGA-based
signal processing is a significant aspect of such HAL efforts. In this study, we show how a platform-based
approach to FPGA design that provides a high level of design abstraction can also provide the ability to target
multiple FPGA famailies from a single source model. The approach combines direct mapping of a Simulink model
with code generation of register-transfer level HDL. By exploiting retiming and other optimizations available
through logic synthesis, it is possible to obtain very efficient realizations of signal processing functions. This
research complements HAL recommendations by focusing on mechanisms, guidelines and methodologies for
constructing signal processing functions in FPGAs. It helps to address requwements for executable
specifications as well as providing source that can be compiled though automatic code generation. At last, this
new design technique would help in designing and realizing SDR-3G wireless communication system and
accelerate the transition to 4G wireless communication system.
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INTRODUCTION

Field-Programmable Gate Arrays (FPGAs) are widely
used to implement physical layer signal processing
functions for Software-Defined Radios SDRs (Dick and
Hwang, 2004). FPGAs provide very high performance
custom hardware solutions and can be reconfigured
n system and when bringing up a new waveform in the
modem.

Despite  their reprogrammability, they have
historically been considered part of the hardware within
a modem rather than part of the software. Consequently,
the SDR layer or
Commumications Architecture (SCA) has largely ignored
1ssues related to the specification, configuration, signal
transport or inter-component interfaces that are important
to the platform provider of an SDR that exploits FPGAs.
In this study, we describe a platform-based approach for
obtaming portable FPGA source code, whilst
simultaneously providing executable specifications, test
harnesses and golden test vectors (ie, providing
nput/output  relations for  establishing
conformance to specification through simulation). The
approach treats a high-level system model specified in

software control Software

accurate

Simulink as the source code for an FPGA implementation.
A block in the model may map onto a set of intellectual
property blocks provided by the vendor that exploit
vendor-specific device resources to implement the block’s
function efficiently in a number of FPGA families.
Alternatively, a block may map onto a behavioral
description in a hardware description language that 1s
inherently portable. It 1s on the latter case that we focus
in this study. The approach extends widely used FPGA
design techniques using industry standard design tools.
Although, described m terms of proprietary (though
commercially available) tools for Xilinx FPGAs, out
approach is equally applicable to other devices.

MATERIALS AND METHODS

Register transfer level HDL: Major FPGA vendors have
multiple device product lines, each of which may be
further divided mto different families, each of which is
further divided into different part types that differ in
available resources, speed grade and package. For
example, Xilinx has two primary FPGA product lines:
Virtex, which targets highest performance and gate
density and whose most recent families include Virtex-4
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and Virtex-TT Pro (Xilinx, 2003a, b) and the Spartan family,
which targets high volume and lower cost applications.
Spartan-3 1s the most recently introduced family member
(alinx, 2006). Because a new FPGA family 1s introduced
roughly every 12-18 months and the design cycle for a
major SDR design can be a significant fraction of this
period, the implications of code portability (or more
accurately, non-portability) are clear. Often a system must
be built to target a family in advance of broadly
available silicon.

The prevailing abstraction in hardware description
languages for FPGA design 1s Register Transfer Level
(RTL), which can be synthesized into device-specific logic
resources (De Micheli, 1994). At this level of abstraction,
a design 18 a network of combinational circuits separated
by registers. Registers and other circuit elements are
represented behaviorally through idioms inferable by
commercial synthesis tools. This style of coding allows
the user to specify for example an addition operation with
the operator *+°, with the synthesis tool mapping this
appropriately to device specific architecture primitives.
Considerable progress has been made over recent years
in commercial synthesis tools to efficiently target FPGAs.
In addition to technology mapping, synthesis tools also
apply optimization algorithms to a circuit that preserve
behavior, while improving the circuit quality under
well-defined criteria (typically logic area or performance).
Of particular interest is retiming, which 1s the reallocation
of unit delays (e.g., registers) throughout a circuit in
order to reduce the number of combinational logic
levels (De Michel, 1994). There is a close correlation
between the largest number of logic levels and the
frequency with which bounding registers can be clocked
without setup or hold time vielations, so retiming 15 a
particularly effective synthesis optimization.

SDR design using xilinx system generator DSP design
tools: This study focuses on the system level design
using DSP Design Tools. Based the available resources
from (Proakis and Saleln, 2008, Haessig et al, 2005),

a simple 16-QAM (Quadrature Amplitude Modulation)
SDR (Software Defined Radio) transmitter and receiver
model 13 designed for Virtex-4 FPGA architecture in Xilmx
System Generator and MATLAB/Simulink environment.
The GUI (Graphical User Interface) of the design is
model-based structure using Xilinx specific blockset as
shown in Fig. 1.

Xilinx FPGA design flow and software tools: The basic
flow for designing with most every FPGA vendor is
shown in Fig. 2. This flow also illustrates the software
tools used specifically for the Xilinx FPGA design. Xilinx
owns and maintains a complete tool set for the entire
FPGA design flow, some of which is in collaboration with
individual companies. Essentially, all of its tools are
integrated under one umbrella called the Integrated
Software Environment (ISE) package. Simulation and
testing of the SDR transmitter and receiver design were
done using System Generator, a system level modeling
tool from Xilinx (2003a, b). This tool can be used for
designing and testing DSP systems for FPGAs in a visual
data flow environments such as MATLAB Simulink. This
diagram shows that we can use Xilinx System Generator’s
blocks in the design and generate a synthesizable design
which can be implemented using Xilinx ISE’s Project
Navigator (Xilinx, 2007a, b). Tt also uses ModelSim block
which 1s a helper block to invoke ModelSim sumulator and
actually simulate the design. The simulator’s output 1s fed
back to Simulink for verification and the results can be
displayed using Simulink’s sinks. The techniques have
been incorporated in the HDL Simulation and ModelSim
behavioural synthesis tool that reads in high-level
descriptions of DSP applications written in MATLAB and
automatically generates synthesizable RTL models in
VHDL or Verilog. Experimental results are reported and
mapped onto the Xilinx Virtex-4 FPGAs. Once the overall
design and budget has been defined from the system
level, the FPGA design flow can begin. Today, most
designs begin with a Hardware Description Language
(HDL), either Verilog or VHDL, which can be entered

292 »
276 .
Bit_in Z
Inleger delay 2 »
bt_in
rat Bubeiract 1
Constant 1 | LQAM 7 fin I Bit, ( .3—'
Q_QAM AWGN - In_QInt —gzl_,
lmgn- AWGN . Substract 2 ——
QAM Tx Rﬂl-lmaae delay3  Channel Cbmﬂ?gem f  Doat | N Seape 1
complex QAM Rx L, I:I
Constent 2
Scope 2

Fig. 1: SDR design using system generator
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Fig. 2: System generator based FPGA design flow

using any basic text editor. Sometimes Verilog and VHDL
are referred to as RTL or register transfer logic. Multiple
levels of abstraction can be built upon each other to
create hierarchical designs. These abstraction levels allow
for incremental and iterative refinement of gate-level
implementation of the system design.

Included as part of ISE software suite is a tool called
Core Generator (Avnet, 2006). This 1s a GUI based tool
that offers a designer parameterized logic Intellectual
Property (IP) cores that have been optimized (for area and
speed) to be implemented on Xilinx FPGAs. These
ready-made cores offers fimctions that range from simple
counters, comparators, adders, multipliers, to full
system-level building blocks such as memories, FIFOs,
filters and transforms. The structural abstraction level of
HDL allows logic designers to implement these cores right
mnto the source code as a netlist. Once the netlist has been
complete, it needs to be functionally verified. Functional
verification tests the design to determine if it is working as
mtended. First a test-bench (high level HDL stimulus file)
15 created that wraps around a design to stimulate the
design inputs (Xilinx, 2007a, b).

Depending on the type of design, sometimes the
test-benches are more advanced and momtor the design
outputs by using additional logic to check the results and
thereby creating automated self checking tests. In either
case, it i3 necessary to visually verify and debug the
signals at all levels of hierarchy n the design on wave
simulator. A company called Mentor Graphics produces
an HDL simulation and debug environment called
ModelSim. If an HDL design is purely behavioural, the
sinulator will most likely be able to properly simulate the
design. However, since the HDL source code may contain

11

either Xilinx TP cores or lower level macros specific to the
FPGA architecture, a set of Xilinx libraries that indicate
how each of the ligher level blocks should behave must
be made available to the simulator. Xilinx solves this 1ssue
by working with its own version of ModelSim, which
includes all necessary Xilinx libraries to functionally verify
any abstraction level for any Xilinx FPGA. Model Sim can
be run as a stand-alone program or it can be executed from
within ISE. During synthesis, the HDL source code
including any Xilinx specific cores are translated into a
gate-level structural netlist. This netlist 13 then optimized
for implementation on Xilinx device.

There are two synthesis tools used in the Xilinx
FPGA design flow (Xilinx, 2007a, b). As part of the ISE
suite, Xilinx offers its own synthesis tool called Xilinx
Synthesis Tool or XST. The ISE tools also contain
synthesis tool called Synplify Pro produced by Synplicity
(2007). This synthesis tool is an industry standard tool
with design libraries available to support nearly every
major FPGA platform. Although, both tools essentially
yield the same final result, Synplify Pro is generally the
synthesis tool of choice, especially if the FPGA design is
a test platform for an ASIC mmplementation which
Synplicity also supports. The input file types to a
synthesizer are either V (Verilog) or VHD (VHDIL,) with the
output file type of Synplify being an EDIF (Electronic
Data Interchange Format) file and the output file of XST
being an NGD (Native Generic Database) file. Since the
netlist has not been mapped into Xilinx specific building
blocks at this stage, synthesis tools cannot give accurate
timing results i its tining and area log files only
estimation. The output of the Synthesis tool 1s then fed
into the next stage of the design flow, which is called
Implementation in the Xilinx flow and 1s the core utility of
the ISE software suite. Before this step is executed, the
User Constramts File (UCF) 1s typically filled out. The
most critical information in the constraints file is the pin
locations for each /0 specified in the HDL. design file and
the timing information such as the system clock frequency
(Avnet, 2006). The constraints file also allows a designer
to specify specific mapping of gates in the netlist to
specific Xilinx blocks as well as the placement of these
blocks. Further, it allows specific timing constraints on a
per /O basis for any critical timing paths. ISE contains a
built in GUT called PACE (Pin And Constraints Editor) for
the purpose of entering all the constraints. The
Implementation step of Fig. 2, reads in the constraints file
and consists of three major steps: translate, map and place
and route. The Translate step essentially flattens the
output of the synthesis tool into a large single netlist. A
netlist m general 1s a big list of gates (typically NAND/
NOR) and 13 compressed at this stage to remove any
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hierarchy. The Map step groups the logical symbols in
the flattened netlist into physical components specific to
the target device. The Place and Route step then places
each of these physical components onto the FPGA chip
and connects them through the switch matrix and
dedicated routing lines. Then, timing information is
generated in log files that indicate both the propagation
delay through each building block in the architecture as
well as the actual routing delay of the wires connecting
the building blocks together.

The ISE Implementation stage outputs a NGD (Native
Generic Database) file (Avnet, 2006). Just as the synthesis
tools output an HDL simulation netlist, so do the ISE
Implementation tools. However, this time these simulation
files contain all of the timing information that was
generated in the Map and Place and Route stage. These
files can be used for 2 purposes. First they can be read
back into the Model Sim simulator just as before. This is
called back annotated timing simulation.

This type of simulation is much more time consuming
and difficult, since all of the propagation and wiring
delays are evident on each signal. Second, they can be
used for static timing i.e., timing analysis that does not
depend on stimulus to the design circuit. This step is
critical in ASIC design flows and is also available in the
FPGA design flow through ISE tool. Notice once more the
iterative verification process that leads back through HDL
simulator.

Once the design had been fully verified with the
correct timing then final configuration bit file that will
eventually be downloaded into the FPGA can be
generated by the main ISE tool. Once the bit file has been
created, another tool in the ISE suite called IMPACT is
used to program either the FPGA directly or through
JTAG interface (Avnet Memec, 2005), i.e., standard cable
connected to computer through parallel port. For direct
programming, the driver of the target FPGA must be
activated and the bit file is downloaded into the

FPGA viaIMPACT. Afterwards, real-time verification
for the implemented FPGA design (before ADC and after
DAC) will be executed.

RESULTS AND DISCUSSION

HDL design of activation system: The ModelSim software
is used to design Verilog HDL module of activation of
plug-in Avnet Electronic Marketing P240 Analog Module
(Xilinx, 2007a, b) and Virtex-4 FPGA on-board 1CS8442
Programmable LVDS (Low Voltage Differential Signaling)
Clock Synthesizer (Avnet Memec, 2005) with specific
configurations. The HDL module of activation system
should include all the specifications, characteristics and
features described above so that ADC (Texas Instrument,
2007) and DAC (Texas Instrument, 2005) in P240 can
function properly. The simulation result of HDL Module
of Activation System for both the transmitter and receiver
(which use the same Virtex-4 FPGA model) is shown in
Fig. 3.

HDL module of integrated design: The HDL module of
activation system and HDL netlist of SDR model are
verified firstly before being combined to become HDL
module of integrated design. The simulation results for
the HDL netlist of SDR transmitter and receiver are shown
in Fig. 4 and 5, respectively. Notice these simulation
results are similar to the System Generator design.
Considering the real-time implementation of integrated
design using FPGA and P240 Analog Module, the ADC
and DAC in P240 should be activated and configured
first prior to the running of FPGA design in order to
avoid instability of ADC and DAC that can produce
undesired outputs to or from FPGA during process of
configuring ADC and DAC. Thus, the main clock
enable (ce) of FPGA design is disabled during the transfer
of Serial Programming Interface (SPI) codes to ADC and
DAC in P240 (Texas Instrument, 2007).
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Fig. 3: Simulation result of HDL module of activation system
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Controlling the main ‘ce’ would be easier rather than
clock enable clear (ce clr), which requires additional
logics to adjust sampling phase of all the multi-sample
data when de-asserted (Xalinx, 2007a, b). The simulation
results of HDL. module of integrated design for the
transmitter and receiver are shown n Fig. 4-7,
respectively.

Synthesis of integrated design: Though Xilinx ISE has its
own synthesis tool called XST (Xilinx Synthesis
Technology) but it can only synthesize HDI netlist
generated from System Generator. Therefore, Synphfy Pro
software is used to perform logic synthesis for the HDL
module of integrated design in 2 stages (Synplicity, 2007).

Logic compilation and optimization: Compile the HDL
module of integrated design to Xilinx FPGA structural
elements and then optimize the mtegrated design making
it as small as possible to improve circuit performance.

Technology mapping: Map the optimized integrated
design to Xilinx FPGA logic components using
architectural specific techniques.

Timing characteristics 1s another important issue that
will affect the performance of FPGA implementation. Thus,
the estimated period (required path delay) for the FPGA
element must not exceed the requested clock period. So,
timing slack (requested period-estimated period) should
be positive value otherwise the integrated design has to
be reworked. The clock frequencies are set to 100 MHz for
CLK 100 (ADC/DAC SPI process) and 80 MHz for
LIO CLKIN 1 (16-QAM SDR transmitter and receiver)
(Avnet Memec, 2005). The estimated timing report for the

Table 1: Estimated timing report for 16-QAM transmitter

synthesized design meets the timing constraints as shown
in Table 1 and 2. The Starting Clock of system relates to
Hilinx TP core used in the integrated design. Once the
synthesis of the integrated design 1s error free in terms
of functionality and timing, FPGA pins (pad locations)
are assigned accordingly referring to user guide of (Avnet
Memec, 2005).

FPGA implementation: The synthesis output files that are
required in Xilinx ISE software are in EDIF (Electronic
Design Interface File) and UCF (User Constraints File)
formats, which represent optimized netlist of mntegrated
design and timing constraints and FPGA pin assignment,
respectively.

To implement the synthesized design into Virtex-4
FPGA development board, Xilinx ISE performs steps as
described in Fig. 2, ie., Translate, Map, Place and
Route (PAR), Bit Generation and Program Download to
FPGA for the SDR model. Make sure no errors for each
step described earlier. The tuming requirement is satisfied
as shown in the post-PAR (final) static timing report in
Table 3 and 4.

Due to no error and warning for DRC (Design Rules
Checker) and bit-stream generation process, the
configuration bit-stream file is downloaded to Virtex-4
FPGA board. The mput and output waveforms are tested
in physical assembly of the SDR transmitter and receiver
as shown in Fig. 8.

The ADC input and DAC output signals in
P240 Analog Module for the SDR transmitter and
receiver are connected to oscilloscope in order to
display real-time result as shown 1in Fig. 9 and 10. Both
the transmitted and received signal should be similar,

Starting clock Requested frequency (MHZz) Estimated frequency (MHzZ) Requested period Estimared period Slack
CLK 100 100.0 189.4 10.000 5.280 4.720
LIO CLKIN 1 80.0 2187 12.500 4.573 T.927
System 100.0 511.8 10.000 1.954 8.046
Table 2: Estimated timing report for 16-QAM receiver

Starting clock Requested frequency (MHz) Estimated frequency (MHz) Requested period Estimared period Slack
CLK_100 100.0 189.4 10.000 5.280 4.720
LIO_CLKIN_1 80.0 134.1 12,500 7456 5.044
System 100.0 216.6 10.000 4.617 5.383
Table 3: Post-PAR static timing report for 16-QAM transmitter

Constraint Check Worst case slack Best case achievable Timing error
TS CLK 100=PERIOD TIMEGRP “CLK 100" SETUP 4.412 ns 5.588ns 0

10 ns HIGH 50% HOLD 0.542 ns 0

TS _LIO_CLKIN_1=PERIOD TIMEGRP "LIO_CLKI SETUP 5.607 ns 6.8393 ns 0

N 1712.5 ns HIGH 50% HOLD 0.257 ns 0
Table 4: Post-PAR static timing report for 16-QAM receiver

Constraint Check Worst case slack Best case achievable Timing error
TS _LIO_CLKIN_1=PERIOD TIMEGRP "LIO_CLKI SETUP 1.465ns 11.035ns 0

N 17 12.5 ns HIGH 50% HOLD 0.358 ns 0

TS CLK 100=PERIOD TIMEGRP “CLK 100" SETUP 5.021 ns 4.979 ns 0

10 ns HIGH 50% HOLD 0.512 ns 0
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Fig. 8: Physical assembly of SDR transmitter and

receiver
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although noise effect and distortion may occur (real-world
application issue). Notice that the empirical (real-time)
result is similar to the simulated result.

CONCLUSION

VHDL behavioral modeling is useful in digital
systems design because the designer can model the
circuit in a program that simulates the circuit operation
rather than spend time on complex finite state machines or
truth tables. This greatly facilities and reduces the design
time for a large digital system. The simulation waveforms
presented in this study have proven the reliability of the
VHDL implementation to describe the characteristics and
the architecture of the digital design. The simulated
waveforms also have shown the observer how long the
test result can be achieved by using test-bench file.
Software defined radio will most likely be the radio of the
future.

The architecture has been developed for the two
systems and the method of designing the base band of
the SDR transceiver for a multi standard protocol has
been devised. This topic is promised topic for the
software radio systems and all communication.

With the increased adoption of FPGAs as signal
processors comes an increased expectation for design
flows and methodologies that support similar
programming models to general purpose and DSP
processors. Although, FPGA source code is not as widely
portable as code for general purpose microprocessors, we
have demonstrated how System Generator and similar
design tools provide considerable progress towards this
end. We have shown how a single System Generator
model can be used to specify both behavior and
implementation producing a generic RTL implementation
suitable for an FPGA. The design exploits retiming and
logic synthesis optimizations in order to achieve high
performance.
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