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Abstract: Smart antenna systems plays an mnportant role in wireless communications systems. This study
begins with a heuristic approach about the optimization of Signal-to-Interference Ratio (SIR) to enhance the
received signal and minimize the interfering signals in wireless communications. After that, the approach for
umprovisation of SIR of a desired signal 1s extended for a specified condition and for its formulation requires
noise to be added mn the system 1n this study. In this study, a rigorous derivation of the Signal-to-Interference
Ratio (STR) maximization is derived by considering a general non adaptive conventional or traditional
narrowband array and finally the limitations of non-adaptive or fixed beamforming approach to enhance the

desired signal.
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INTRODUCTION

Over the decade, demands for better quality and new
value-added existing  wireless
commumcation infrastructures have risen beyond all
expectations. It 15 estunated that half a billion handsets
will be put into the context of the third generation system,
which will provide an up to 2 MB bandwidth for each
user. The most challenging demands are: the need to
mcrease the spectrum efficiency and the system capacity
of the current wireless networks. These demands have
brought technological challenges to service providers.
Due to the ability of suppressing mterference and
combating against fading and providing new services, the
adaptive array antennas or so called smart antennas have
become one of the key technologies to realize 3rd
Generation (3G) and even 4th Generation (4G) wireless
communications. We start with a brief mtroduction about
one criterion, which can be applied to enhancing the
received signal and minimizing the interfering signals is
based upon maximizing the Signal-to-Interference Ratio
(SIR) 18 given by Litva and Kowk-YeunglLo (1996) and
Monzingo and Miller (1980) in wireless communication
systems. We will present different conditions and
considerations to improve the desired signal strength
through the optimization of (SIR) with the smart antenna
technologies in the wireless communications. After that
by taking the general non-adaptive narrowband array, the

services on  the

derivation for maximization of Signal-to-Interference Ratio
(SIR,,,.) 18 derived and with their respective array patterns,
comparison is made.

Maximum signal to interference ratio: The optimization
of Signal-to-Interference Ratio (SIR,,,) is 1 criterion to
enhance the received signal and minimizing the interfering
signals by placing nulls at their angles of arrival. Assume
that the 3 element array with one fixed known desired
source and 2 fixed undesired interferers and all signals are
assumed to operate at the same camrer frequency as
shown in Fig. 1.
The array vector 1s given by:

a:[efjkd sin 8 1 ejkd smS]T (1)

And the array weights yet to be determined are given
by:
wh=[w, w, w, ] @)
So, the general total array output is given as:

y — W,d — W1 efjkd sn 8 T WZ T Wajkd sin g (3)

The array output for the desired signal 1s represented
as vy, and the array output interfering or undesired signals
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Fig. 1: Three-element array with desired and interfering
signals

are represented as y, and y,, respectively. Since, there are
three unknown weights, there must be three conditions

satisfied as:

Condition 1:

v, = WO, =W, ot sin® @
+w, + W, gl —q
Condition 2:
y, = V_VH,&I =W, o sy 5
+w, +w,eM?=0
Condition 3:
y,= \TVH,&Z =w, ikl and; ©

kd singy
+w, +w,e =0

Condition 1 demands that y; = 1 for the desired
signal, thus allowing the desired signal to be received
without modification and condition 2 and 3 rejects the
undesired interfering signals given by Godara (2004).
These conditions can written in matrix form as:

#, A=l ™
Where,
A=[a, & a,]
is a matrix steering vectors and uw, =[1 0 ... 0" is a

Cartesian basis vector. One can invert the matrix to find
the required complex weights w,, w, and w; by using

(&)

T _
wi=ulLA™

One consideration in estimation of weights: The
Cartesian basis vector in Eq. & mdicates that the array
welghts are taken from the lst row of A-'. This
development 1s predicated on the fact that the desired
signal and the total interfering signals make A an
mvertible square matrix. It 18 notice that A must be an
NN matrix with N-array elements and N-arriving signals.

13

In the case, where, the number of interferers 15 <N-1,
where, N indicates the number of array elements, this
needs to modify the Eq. 8 and this modified equation 1s
given by Godara (1997), which 1s an estimation of weights.
However, this formulation requires noise to be added in
the system because the matrix invertion will be singular
otherwise.

Using this method we have
T —
wi=ulLA" (A, A"+ o) ®)
where:
ﬁ{ = The cartesian basis vector whose length equals to
the total number of sources
o’, = The noise variance

n

MATERIALS AND METHODS

Traditional narrowband array: Figure 2 shows one
desired signal arriving from the angle ®; and N inteferers
arriving from angles @, .... ©,. The signal and the
interferers are received by an array of M elements with M
potential weights. Each received signal at element m also
includes additive Gaussian noise. Time is represented by
the kth time sample. Thus, the weighted array output y
can be written as:

yk=w", x(k) (10)
Where,
i, (k)
Tk =, s (k) +[@, T,... Gyl iz(:k) +ack) an
iy (k)

=x,(k)+ x;(k)+n(k)
with
w=[w, w,..w, [

are array weights, X, (k) 1s a desired signal vector,

X, (k)= Aninterfering signals vector
n(k) = Zero mean Gaussian noise for each channel,
o, = M-element array steering vector for the ®i

direction of arrival

We can rewrite the Eq. 10 using the expanded form
of Eq. 11 as:

y()=w", [X,(k)+ X, (k)+ k)]
=w", [%,(k) + k)]

(12)

where is undesired signal.
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Fig. 2: Traditional narrowband array

It is initially assumed that all amriving signals are
monochromatic and the total number of arriving signals
N-+1 <M. So that the arriving signals are time varying and
thus, our calculations are based upon k-time snapshots of
the incoming signal. Obviously, if the emitters are moving,
the matrix of steering vectors is changing with time and
the corresponding arrival angles are changing. Unless
otherwise stated, the time dependence will be suppressed
inEq. 11 through 12.

Derivation for maximum SIR: The basic sidelobe
canceling scheme works through an intuitive application
of the array steering vector for the desired signal and
interfering signals. However, by formally maximizing the
SIR, we can derive the analytic solution for all the
arbitrary cases.

We can calculate the array correlation matrices for
both the desired signal (R_) and the undesired signal
(R,,). Since, we do not generally know the statistical
mean of the system noise, it is best to label all R matrices
as correlation matrices. If the process is ergodic and the
time average is utilized, the correlation matrices can be
defined with the time average notation as R _ and R .

The weight array output power for the desired signal
is given by:

(13)

where,

1s a signal correlation matrix.
The weighted array output power for the undesired
signals is given by:

o' =E[|w",u[]=w", R, W (14)
Where, it can be shown that
R, -R,+ R (1)

u nn

14

With
Correlation matrix for interferers
Correlation matrix for noise

En
Rnn

The (SIR) is defined as the ratio of the desired signal
power to the undesired signal power as:

—H 5 —
sl =% = W LR, W (16)
w R

The SIR can be maximized m Eq. 16 by takang the
derivative with respect to W and setting the result equal
to zero Harrington (1968). Rearranging terms, we can
derive the following relationship as:

(17)
or

(18)

Equation 18 an eigenvector equation with SIR being
the eigenvalues. The maximum SIR (SIR, ) is equal to the
largest eigenvalue A, for the Hermitian matrix R'R .
The eigenvector associated with the largest eigenvalue 15
the optimum weight vector W, . Thus,

R!R,_, ®WSIR=h__ % LwIR - (19)

- =SIR
Since, the correlation matrix 1s defined as:
R, =E[|s 1o, &,

We can pose the weight vector in terms of the optimum
Wiener solution.

WSIR=R;!, &, (20)
Where,
2
p=EUsl oo oom (21)
SIR, .
RESULTS AND DISCUSSION

If the desired signal is arriving from 6, =0 while,
6, = -45° and 6, = 60°, the necessary weights can be
calculated by substituting these data in Eq. 20 as:

w, | [0.28-0.07,
w, |5 0.45
w, | | 0.28+0.07,

and the array factor can be plotted as shown in Fig. 3.
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Fig. 3: Sidelobe cancellation pattemn
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Fig. 4: Array pattern with approximate nulls at -15° and 25°

The Cartesian basis vector in Eq. 8 indicates that the
array weights are taken from the 1strow of A~'. From this
analysis, we can predicated that the desired signal and the
total of the interfering signals make A an invertible
square matrix. A must be an N=N matrix with N-array
elements and N-arriving signals.

In the case, where, the number of interferers 1s less
than N-1, where N is number of array elements, which
needs to modify the Eq. 8 and this modified equation
gives an estimation of weights. However, this formulation
requires noise to be added in the system because the
matrix inversion will be singular otherwise. Using this
method we can get the modified equation as shown as
Eq. &

For N = 5-element array with element spacing d = 1/2,
the desired signal arriving at 8 = 0% and 1 interferer arrives
at -15° whle, the other interferer arrives at +25°. If the
noise variance is ¢, = 0.001, by using the array weight
estimation found in Eq. 9, we can find the array weights.
The matrix of the steering vectors is given as:

15

‘K:[au o o)
Where,
@, =[11111]"
And
an:[e—ﬂnsm&\ orimsn g, | gindng, ejznsme,,]'r
where, n = 1, 2. Since, only 3 sources are present,

1 =[100] . By substituting these data in Eq. 9, we can
get:

FE =TT, A (A, A%+ 02T) =
0.26+0.11, ]
0.17 + 0.08,
0.13
0.17 - 0.08,

0.26 — 0.11,

The plot of this array factor is shown in Fig. 4.

The advantage of this method is that the total number
of sources can be less than the number of array elements.

The basic sidelobe canceling scheme works through
an mntuitive application of the array steering vector for the
desired signal and interfering signals. However, by
formally maximizing the SIR, we can derive the analytic
solution for all arbitrary cases which 1s described in this
study.

For N = 3-element array with spacing d = 0.54 has a
noise variance ¢°, = 0.001, a desired received signal
arriving at 8, = 15° and 2 interferers arriving at angles
6, = -30° and B, = 45° Assume that the signal and
interferer amplitudes are constant. So, to calculate SIR ...

We can get normalized weights from Eq. 19. Based
upon the incident angles of arrival for the desired signal

and interferers along with the array vector o , we can find
the correlation matrices of the and undesired signals as:

1 1 -1
R,=[-i 1 i
-1 4 1
and
2.001 —0.61-0.200 -1.27-0.961
R, =| —0.61+0.20i 2.001 0.61-0.20i
-1.27+0961 -0.61+0.201 2.001

The largest eigenvalue for Hg. 19 is given as
SIR,.. = Apw = 679. The array weights are arbitrarily
normalized by the center weight value.
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Fig. 5: Maximum SIR beamforming
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The derived pattern 15 shown in Fig. 5.

Thus

)

WSIR

CONCLUSION

The applications with these fixed beamforming
approaches are limited because these approaches are
assumed to apply to fixed arrival emitters. If the arrival
angles don’t change with time, the optimum array weights
won't need to be adjusted. However, if the desired arrival

16

change with time, it is necessary to devise an optimization
scheme that operates on-the-fly so as to keep
recalculating the optimum array weights.
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