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Abstract: In this study, we propose a new TCP based multimedia congestion control protocol called MCCP.
MCCP mplements a novel window based congestion algorithm on end-to-end available bandwidth estimation.
MCCP effectively estimates the bottleneck bandwidth share of a connection. The estimate is based on
mformation in the acknowledgements (ACKs) and the rate at which the ACKSs are received. After a packet loss
indication, which could be due to either congestion or link errors, the sender uses the estimated bandwidth to
properly set the congestion window and the slow start threshold, thus mamtaming the reasonable window size
in case of random losses. The goal of MCCP is to estimate the connection available bandwidth to achieve high
utilization of bandwidth, without starving other connections. MCCP deals well with highly dynamic bandwidth,
large propagation time/bandwidth and random losses m the current and future heterogeneous Internet. MCCP
uses fast probing, a mechanism that repeatedly resets slow start threshold based on available bandwidth share
estimate. Tn congestion avoidance, MCCP invokes fast probing upon detection of extra available bandwidth
via a scheme we call non-congestion detection (NCD). Fast probing is actually invoked under the following
conditions: A large amount of bandwidth that suddenly becomes available due to change m network
conditions. Random loss during slow-start that causes the connection to prematurely exit the slow-start phase.
MCCP sender gets an accurate estimate of the connection’s fair share of the bottleneck bandwidth and
effectively adjusts the sending rate to the changing estimate. As a result fast probing enhances probing during
slow start and whenever non-congested conditions are detected. Experimental results in ns-2 simulation show
that MCCP can significantly improve link utilization over a wide range of bandwidth, propagation delay and
dynamic network loading.
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INTRODUCTION

Transmission control protocol (TCP) has been widely
used m the Internet for numerous applications. The
success of the congestion control mechanisms introduced
in Allman e al. (2002) and their succeeding enhancements
has been remarkable. The current implementation of
TCP Reno/NewReno runs i 2 phases: slow-start and
congestion avoidance. Tn slow-start, upon receiving an
acknowledgment, the sender increases the congestion
window (cwnd) exponentially, doubling cwnd every
round-trip time (RTT), until it reaches the slow-start
threshold (ssthresh). Then, the connection switches to
congestion cwnd grows more
conservatively, by one packet every RTT (linearly). Then,
upon a packet loss, the sender reduces cwnd to half.

After a packet loss, instead of simply cutting cwnd by
half as in standard TCP, MCCP resets cwnd along with

avoidance, where

ssthresh according to the MCCP sender’s available
bandwidth estimate, thus mamtaming a reasonable
window size in case of random losses and preventing
overreaction when transmission speed 1s high (Floyd,
2003). MCCP relies on an adaptive estimation technicque
to determine a sender available bandwidth estimate at all
times. The goal of MCCP 1s to estimate the connection
eligible sending rate to achieve high utihzation, without
starving other connections. A brief overview of MCCP
and available bandwidth estimation is given in the study.

In this study, we present MCCP with fast probing, a
sender-side only enhancement, that intelligently deals
well with highly dynamic bandwidth, large propagation
times and bandwidth and random loss in the current and
future heterogeneous Internet.

The first mechamsm 1s fast probing, which 1s mvoked
at connection startup and after extra available bandwidth
is detected. Fast probing adaptively and repeatedly resets
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ssthresh based on available bandwidth estimation. The
result is fast convergence of cwnd to a more appropriate
ssthresh value. In slow-start, fast probing increases
utilization of bandwidth by reaching cruising speed faster
than existing protocols, this is especially important to
short-lived connections. In this study, we extend the use
of fast probing to congestion avoidance when extra
unused bandwidth is detected.

The second mechanism concerns how to detect extra
unused bandwidth. We realized that if a TCP sender
identifies the newly materialized extra bandwidth and
mvokes fast probing properly, the comnection can
converge to the desired window faster than usual linear
increase. This also, applies in the case when a random
error oceurs during startup, causing a connection to exit
slow-start prematurely and switch to congestion
avoidance. In this study, we propose a no-congestion
detection (NCD) mechanism, which identifies the
availability of persistent extra bandwidth in congestion
avoldance and invokes fast probing accordingly.

TCP STARTUP PERFORMANCE

In this study, we state briefly the current TCP slow-
start mechanisms and evaluate their startup performance
in large bandwidth delay networks by simulation. We
llustrate the inadequacy of the current schemes when
facing networks with large BDP and reveal the reason
behind it. This study serves as motivation of our work.

Tep reno/newreno: In TCP Reno/NewReno, a sender
starts in slow-start, cwnd < ssthresh and every ACK
received results in an increase of cwnd by one packet.
Thus, the sender exponentially increases cwnd. When
cwnd hits ssthresh, the sender switches to congestion
avoidance phase, increasing cwnd linearly. Tn this section,
we evaluate Reno/NewReno startup performance in large
BDP networks. If the immtial ssthresh is too low, a
connection exits slow-start and switches to congestion-
avoldance prematurely, resulting in poor utilization
(Hoe, 1996). Figure 1 shows the Reno cwnd dynamics in
the startup stage. The results are obtained for a
bottleneck bandwidth of 40 Mb/s and RTT values of
40, 100 and 200 ms. The bottleneck buffer size is set equal
to BDP in each case.

From Fig. 1, we see that when RTT = 100 ms, Reno
stops exponentially growing cwnd long before it reaches
the ideal value (BDP = 500). After that, cwnd increases
slowly and has not reached 500 by 20 sec. As aresult, the
achieved throughput is only 12.90 Mb s™', much lower
than the desired 40 Mb s
concerns how RTT affects performance. When RTT
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Fig. 1: ewnd dynamic during the startup phase
Table 1: Newreno utilization during first 20 sec (Bandwidth = 40 Mb s7%)

RTT (ms) 20 50 100 150 200
Utilization (%) 95.60 71.80 23.20 11.0 7.20

Table 2: Newreno utilization during first 20 sec (RTT = 100 ms)
Bandwidth (Mbps) 10 20 40 80
Utilization (%) 77.10 45.90 23.20 13.00

150
6.90

increases, the ideal window grows too. On the other hand,
because cwnd increases one packet per RTT during
congestion avoidance, longer RTT means slower cwnd
growth, resulting in even lower utilization. The results in
Table 1 show the drastic reduction in utilization as RTT
increases (Katabi ef al., 2002).

Consider now the impact of bottleneck bandwidth on
utilization during startup stage (Jacobson, 1988). With the
increase of bottleneck bandwidth, the packet transmission
speeds up, but the sender still has to wait for ACKs to
increase cwnd. Thus, after prematurely exiting slow-start,
cwnd grows with almost the same rate (one packet per
RTT) regardless of bandwidth. With larger bottleneck
capacity, more bandwidth is left unused, which leads to
lower utilization. Table 2 shows the relation between
utilization and bottleneck bandwidth during the startup
stage. The utilization drops to 4.7% with 200 Mb s~
bottleneck bandwidth.

MCCP: CONGESTION CONTROL
PROTOCOL

In MCCP, a sender continuously momtors ACKs
from the receiver and computes its current Available
Bandwidth Estimate (ABE). ABE relies on an adaptive
estimation technique applied to the ACK stream. The goal
of ABE 1s to estimate the connection eligible sending rate
with the goal of achieving high utilization. When a
comnection mitially begins or restarts after a coarse
timeout, MCCP adaptively and repeatedly resets the
Slow-start threshold (ssthresh) based on the available
bandwidth. After a packet loss indication, which could be
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due to either congestion or link errors, the sender uses
the estimated available bandwidth to properly set the
congestion window and the slow-start threshold.

Available Bandwidth Estimation (ABE): The Available
Bandwidth Estimate is determined using a time-varying
coefficient, exponentially weighted moving average
(EWMA) filter, which has both adaptive gain and
adaptive sampling. Let t, be the time instant at which the
k, ACK is received at the sender. Let 5§ be the ABE
sample and §_ be the filtered estimate of the ABE at time
t, Let ¢, be the time-varying coefficient at t,. The ABE
filter is then given by:

S = oy Sy +(1-0y )5, L

Where,

27, — At

& = Tk k
27, + AL,

and T, 18 a filter parameter which determines the filter gain

and varies over time adapting to RTT and other path

conditions. In the filter formula, the ABE sample at time K
18!

where, d 1s the number of bytes that have been reported
delivered by the jth ACK and T, 1s an interval over wlich
the ABE sample is calculated. ABE uses a continuously
adaptive sampling interval T. The more severe the
congestion, the longer T should be. ABE provides an
adaptive sampling scheme, in which the time mterval T,
associated with the Kth received ACK is appropriately
chosen between 2 extremes depending on the network
congestion level. The sampling interval ranges between
T, and T _. T_. 1s the ACK inter arrival time, while T
issettoRTT.

To determine the network congestion level, the ABE
estimator compares the Estimated Available Bandwidth
with the instantaneous sending rate obtained from
cwin/RTT,,. The difference between the instantaneous
sending rate and the achievable rate, clearly feeds the
bottleneck queue, thus revealing that the path 1s
becoming congested. The larger the difference, the more
severe the congestion and the larger the new value of T,
should be.

When the K, ACK arrives, the estimator first checks
the relation between ABE estimates §_ and the current
cwin value. When §_, * RTT,,, = cwin, indicating a path
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without congestion, T, is set to T,;,. Otherwise, T, is set
to:

cwin — (é‘;kf1 *RTT )

T, =RTT* _ 2)
cwin
Or upon rearrangement:
T, — RTT*( cwin _ék—l)/ cwin (3)
RTT,. RTT,

In Eq. (3), cewin/RTT,, is the expected sending rate,
while 3, ,1s the estimated rate the network allowed. After
T, 18 choser, the ABE sample associated with K received
ACK 1s then expressed by:

2. d

(4

we evaluate the accuracy of ABE estimates, both in the
presence of network congestion and in the presence of
link errors (Jain and Dovroelis, 2003).

Adapting to RTT and network instability in ABE: The
EWMA (Exponentially Weighted Moving Average) filter

S = oS, H(1-0 )5,

places more importance on recent data and discounts
older data in an exponential manner. The value of the
parameter ¢, dictates the degree of filtering. The smaller
¢, the more agile the filter and the larger o, the more
stable the filter. Basically, when t, is larger, ¢, will be
larger and the filter tends to be more stable and less agile.
In ABE, we propose that the parameter T, adapts to
network conditions to dampen estimates when the
network exhibits very unstable behavior and react quickly
to persistent changes. A stability detection filter can be
used to dynamically change the value of T,. We measure
the network instability U with a time-constant EWMA
filter.
Uy = BU; + (1-) S-S, (5)
Tn Eq. (5), S, is the K, rate sample and [} is the gain of
thus filter, which 1s set to be 0.6 in our experiments. When
the network exhuibits high instability, the consecutive
observations diverge from each other, as a result, T,
increases. Under this condition, increasing the value of T,
makes the ABE filter, as in Eq. (1), more stable. When a
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TCP connection is operafing normally, the interval
between the consecutive acknowledgements are likely to
vary between the smallest the bottleneclt capacity allows
and one RTT. Therefore, 1, should be larger than one
RTT, thus 1, =RTT. We set 1,10 be:

(6}

m, =RTT +

The walue of RTT in the expression above is ohtained
from the smoothed RTT estimated in TCP. The factor N is
set to be 10 in our experiments, which gives good
performance under various scenarios. Upy is the largest
instability in the ten most recent observations. The
sarnpling time interval Ty is fized to the interval of the last
2 ACKs in this set of experiments.

Performance evaluation of ABE: TCF behavior in Fig. 2
reveals the reason behind the performance degradation of
NewReno and the robustness of MCCP with small buffer
capacity. & buffer overflow ocours when the cwin exceeds
46 packets, which 15 the sum of the pipe and the buffer
size. Upon the detection of a packet loss, the NewReno
sender (Fig 2a) sets the new cwin and ssthresh to 23
packets (half of the old cwin). This walue is much lower
than the pipe size needed to fully utilize the link. Thus,
setting cwin and ssthresh to half causes the router to be
idle and the link under utilized. Cn the other hand, Fig. 2b
shows that MCCP ABE reduces its cwin and ssthresh
according to the avalable bandwidth estimate (Fig. 2c),
which 1s very close to the optimal value, 1.e., equal to the
pipe size.

We have also assessed relation of the throughput
gains to the End-to-End propagation time and to the
bottleneck link transmission speed. Results show that,
when compared to WewReno, ABE is able to maintain
relatively robust performance with the increase of RTT.
Further, APE is more effective than NewReno in utilizing
botfleneck bandwidth (Jagannathan, 2002), especially
when the bandwidth is higher.

Fast probing mechanism: Fast Probing uses available
bandwidth estimeate to adaphwvely and repeatedly reset
ssthresh. During fast probing, when the current ssthresh
15 lower than avalable bandwidth estimate, the sender
resets ssthresh higher accordingly and increases cwnd
exponentially. Otherwise, cwnd increases linearly to avold
overflow. In this way, fast probing probes the available
network bandwidth for this connection and allows the
connection to eventually exit slow-start close to an ideal
window corresponding to its share of path bandwidth.
The pseudo code of the algorithm, executed upon ACK
reception,is as follows:
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Fig. Z:Mustration of MCCP ABE and NewReno behavior
with small buffer capacity, (2) Newrwno: cwin and
ssthresh, (b) MCCP ARE: cwin and ssthresh, (o)
MCCP ABE: estimate

if (DUPACKES are recerved)

switch to congestion aveidance phase;

else { ACK 15 received)

if (ssthresh < (ABE * RTT )

ssthresh = (ABE * RTTyy) /* reset ssthresh */
endif

if (cwnd > = ssthresh) Mlinear increase phase*/
increase cwnd by 1/ownd,

else if ownd < ssthresh)

Fexponentially increase phaset/

inerease ownd by 1;

endif

endif
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By repeating cycles of linear increase and
exponential increase, cwnd adaptively converges to the
desired window m a timely manner, enhancing link

utilization m slow-start.

Non-Congestion Detection (NCD): Tn this study, we
present a NCD mechanism that aims at detecting extra
available bandwidth and invoking fast probmg
accordingly. In congestion avoidance, a connection
monitors the congestion level constantly. If a MCCP
sender detects conditions, which
indicates that the connection may be eligible for more
bandwidth, the connection invokes fast probing to
capture such bandwidth and improve utilization.
cwnd/RTTmm indicates expected rate
congestion and ABE is the achieved rate. To be more
precise, ABE is the achieved rate corresponding to the
expected Rate 1.5 times RTT earlier. Thus, we must use in
a comparison, the comresponding expected rate, that is
(cwnd-1.5¥RTT, .. ABE tracks the expected rate in
noncongestion conditions, but flattens, remaining close
to the initial expected rate (ssthresh/RTT,,.) under
congestion. We define the congestion boundary as:

non-congestion

m ne

Congestion Boundary = p * Expected Rate
+ (1-B) * Initial Expected Rate, where 0 < p <1

ABE may fluctuate crossing above and below the
congestion boundary. To detect noncongestion, we use
a noncongestion counter, which increases by one every
time ABE 1s above the congestion boundary and
decreases by one if ABE 1s below the congestion
boundary. A pseudocode of the noncongestion detection
NCD algorithm 15 as follows:

if (in congestion avoidance except for the imtial 2 RTT){
if (ABE > Congestion Boundary){

no_congestion counter+t;

else 1f (no_congestion_counter > 0){

no_congestion counter--;

if (no_congestion counter > cwnd) {

restart fast probing;

telse

{ no_congestion_counter = 0,

}

If the parameter P is greater than 0.5, the Congestion
boundary line gets closer to expected rate. We can make
this algorithm more conservative by setting B > 0.5. Even
if the NCD algorithm accurately  detect
noncongestion, there 13 always the possibility that the
network becomes congested mmmediately after the

can
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connection switches to fast probing phase. Many of the
TCP connections may decrease their cwnd after a buffer
overflow and congestion 1s relieved in a short time period.
The NCD m some commection may detect noncongestion
and invoke fast probing. However, the erroneous
detection is not a serious problem. Unlike exponential
cwnd mncrease n slow-start phase of NewReno, the TCP
connection adaptively seeks the fair share estimate in fast
probing mode. Thus, if the network has already been
congested when a new fast probing begins, the fast
probing commection will not mcrease cwnd much and will
go back to linear probing soon enough.

SIMULATION RESULTS

Premature exit from slow-start: Figure 3 shows cwnd
dynamics under random packet loss during slow-start.
The bottleneck link bandwidth is 100 Mb s™, 2 way
propagation delay 1s 100 ms and the bottleneck buffer 1s
equal to the BDP. When cwin/RTT,,, reaches 2 Mbs ™, a
packet is dropped (assumed to be random loss, which may
happen in the early stage of aconnection over satellite
or wireless links). The connection exits slow-start phase
and enters congestion avoidance. Without NCD, cwnd
increases slowly, one packet every RTT, requiring more
than 60 sec for cwnd to reach BDP. With the help of NCD,
the MCCP connection detects persistent noncongestion
within a few seconds and then starts a new fast probing
again.

— cwnd
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------ ssthresh
1000 ..._ 100 Mbps line
800+
k
é 6500
400
2004 .
0 T ¥ T T ¥ T T 1
1] 2 4 6 8 10 12 14 16
Time (sec)
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800+
§ 600+ {
-4 i
4004
1
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0 T T 1 L) L] T L] 1
0 2 4 6 8 10 12 14 16
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Fig. 3: cwnd dynamic under a random packet loss at
slow-start phase, (a) TCP (without NCD), (b)
MCCP (with NCD and fast probing)
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Fig. 4: ewnd dynamic when dominant flows are gone from
the bottleneck router, (a) TCP (without NCD), (b)
MCCP (with NCD and Fast Probing)

The throughputs of these 15 sec simulations are
30.3 Mb s~ without NCD and 88.8 Mb s ™" with NCD and
fast probing.

Dynamic bandwidth: To illustrate how MCCP behaves
under dynamic bandwidth, Fig. 4 shows cwnd dynamics
when nomresponsive UDP flows are gone from the path,
causing extra bandwidth to become available. The
bottleneck link bandwidth is 100 Mb s™', 2-way
propagation delay is 100 ms and the bottleneck buffer is
set to BDP. The nonrespensive UDP flows have
disappeared from the path around 50 sec and the
remaming flow 1s eligible to use the newly materialized
bandwidth. Without NCD, the connection needs 60 sec to
reach BDP. On the other hand, NCD detects the unused
bandwidth within a few seconds and a new fast probing
phase makes instant use of this unused bandwidth. Note
that dynamic bandwidth due to other reasons stated in
Introduction will induce similar behavior that helps to
improve utilization.
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CONCLUSION AND FUTURE WORK

In this study, we presented MCCP, a TCP
modification that uses sender side intelligence to address
the 1ssues of highly dynamic bandwidth, large delays and
random loss to support multimedia applications.
Besides basic TCP scheme, MCCP incorporates 2 new
mechanisms: fast probing and NCD. Fast probing

enhances probing during slow-start and whenever
noncongested conditions are detected. Fast probing
converges to more appropriate ssthresh values thereby
making better utilization of large pipes and reaching
cruising speeds faster, without causing multiple packet
losses. NCD is shown to be effective in detecting
persistent noncongestion conditions, upen which MCCP
invokes fast probing. The combination ensures that
during Congestion Avoidance, MCCP can make quick use
of bandwidth that materializes because of dynamic loads
among other causes. In the future, we will evaluate MCCP
further m terms of expanded friendliness, random loss,
complex topologies and interaction with active queue

management schemes.
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