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Abstract: This letter addresses the problem of controlled synchromzation of Li system in CDMA satellite
system. A general model 15 studied using feedback passivity controls. The concept of semipassivity 1s defmed
to find simple conditions which ensure boundedness of the solutions of coupled Li systems. Numerical

results are presented to show the effectiveness of the proposed chaos synchronization methods.
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INTRODUCTION

Commurmcations satellites have redefined our world.
Satellites and other modern telecommunications networks,
together with TV, have now altered the patterns and
even many of the goals of modern society. Satellites, for
better or have made global,
mterconnected and interdependent. Worldwide access to
rapid telecommunications networks via satellites and
cables now creates widespread Internet links, enables
nstantaneous news coverage, facilitates global culture
and conflict and stinulates the formation of true
planetary markets. Satellites change our world and affect
our lives!.

The realization of the handover between different
satellites and the multiple accesses is very important for
a LEO satellite communication system. Both 1ssues can be
managed by using DS-CDMA (Direct Spread Code
Division Multiple Access) technology. Unfortunately, the
performance of a DS-CDMA system degrades with the
delay of synchronization. For example, the Global star
satellite system is taken as a basic model. Global star is a
LEO satellite commumication system with CDMA
technology, which is already online®™ Recently
immediate synchronization has become very pertinent,
due to the fact that it improves the system.

Chaos control and synchronization have drawn much
attention m the last decade, for which fundamental
research has recently been advanced™. To date, the main
approach of controlling chaos is still dominated by linear
feedback methodologies. The mathematical model of a
chaotic system 1s often linearized around the desired
equilibrium or target trajectory, to enable the application
of the linear control theory. However, there are many

worse, our world

limitations in applying linearization techniques: they are
strictly local and usually not powerful enough for
handling complex dynamics, not to mention the fact that
many chaotic systems cannot be linearized. Moreover,
most nonlinear systems with dimension higher than two
cannot be exactly linearized via diffeomorphism and
smooth feedback 1n terms of the Whitney topology. On
the contrary, nonlinear feedback controls have many
advantages, such as their global nature of effect,
improvement of system transient behaviors, effectiveness
in extending the regions of attraction, etc. Besides,
designing a nonlinear feedback control may not be as
difficult as one might imagine, if the mature nonlinear
control theories are employed appropriately™.

Many people had paid attention to passive network
theory®™. The passive system is a network theory
concept and has dissipative network characteristics. A
system’s dynamical characteristic, such as stabilization,
etc., can be analyzed by using passive network theory.
This letter addresses the problem of controlled
synchronization of La system in CDMA satellite system.
A general model is studied using feedback passivity
controls. The concept of semipassivity is defined to find
simple conditions which ensure boundedness of the
solutions of coupled TG systems. Numerical result is
presented to show the effectiveness of the proposed
chaos synchronization methods.

Properties of passive system: Some preliminaries of
passivity theory used in this paper will be shortly
reviewed for the consistency of the presentation.
Passivity 1s applied to non-linear systems which are
modelled by ordinary differential equations with input
vecteur u(t) and output vector y(t)™:
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x(t) = f(x(thult)
y(t) =h{x{1))

(1)

The system (1) is dissipative with the supply rate
W(u(t), v(t)) if it 1s not able to generate power by itself,
that 1s the energy stored m the system 1s less than or
equal to the supplied power:

Vix(t)) =20
VE(T)) - V) < [ Wuttyy ()t

and
(2)

Furthermore, the storage function V(x(t)) must satisfy
the requirements for a lyapunov function. If there exist a
positive semidefimte layponov function, such that:

aV(X(T))

[u myide j[ £(x(T),u(T)) +eu”

(3)
+8y" (Dy(T) + p¢(X(T))]dT

then the system (1) is passive. A passive system implies
that any increase i storage energy is due solely to an
external power supply.

Then the equilibrium point of the system:

x(t) = f(t,x(1),0) (4

is asymptotically stable in either of the two cases:

. p>0
¢ e+d>0 and the system is zeros-state observation.

The system (1) can be represented as the normal form:

x=f{Z)+glz.y)y
y=liz,y)+kiz,yu

)

The non linear system (5) may be rendred bay a tate
feedback of the form!™:

u=olx)+p(x)v (6)

Next we define a semipassive system. This notion
was introduced in Pogromsky'” and Polushin'™,
equivalent notion was called quasipassivity. Roughly
speaking, a semipassive system behaves like a passive
system for sufficiently large |x|. More precisely, assume
that there exists a nonnegative function V: S{"-R, such
that for all admissible inputs, for all initial conditions and
for all t for which the corresponding solution of (1)
exists, we have

darl

26

V <yTu - Hix) 7

where the function H: ®"- 3 1s nonnegative outside some
ball:

Jp >0, V‘x‘ >p = H(x) 2n(|x| ) (8)

For some continuous nonnegative function 1
defined for |x|zp. If the function H is positive outside
some ball, i.e., (8) holds for some continuous positive
function m, then the system (3) is said to be strictly
SEINIPassive.

The concept of semipassivity allows one to find
simple conditions which ensure boundedness of the
solutions of synchronization systems.

Consider a coupled chaotic Lii system of the form
(1) as

{Xt(t) =1(x,) ond {Xr(t) =f(x,)+Bu (9)

v, (1) =Cx, v, (1) =Cx,

Where: f(0) = 0 and B,C constant matrices of appropriate
dimension. Define the symmetric 2*2 matrix I' as:

1
3

Vi
Y11

r—‘ (10)

Yi; = ¥y 2 0 all row sums are zerc. The matrix I' is
symmetric and therefore all its eigenvalues are real.

Moreover, applying Gerschgorin’s theorem about
localization of eigenvalues, see that all
eigenvalues of I' are nomegative, that is, the matrix 1s
positive semidefinite!”,

We say that the systems (9) are diffusively coupled
if the matrix CB is similar to a positive definite matrix and
the systems (9) are interconnected by the following

feedback:

one  can

u:_Y21(yr_Yt) (11)

where y,; = v,; = 0 are constants.

In this case, we rewrite the systems (9) m a form
which can be obtained from (9) via a linear change of
coordinates due to the nonsingularity of:

z=4q(zy) (12)
y=a(z,y)+ CBu
Theorem 1 Pogromsky™: Consider the smooth

diffusively coupled systems (9) and (12), which, because
of the nonsingularity of CB are rewritten as (9) and (12).
Assume the following.
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Assumption 1: The system

{Z =qizy) (13)

y=a(z,y)+ CBu

1s strictly semipassive with respect to the mput u and
outputy with a radially unbounded storage function V

Assumption 2: There exists a -smooth ¢* positive definite
function and a positive number ¢ such that V, the
following mequality 1s satisfied :

(VV,(z, ~ 2, )Tz y) —alz, — v < -l — 2, (14

Theorem 2': Assume that there exists a positive definite
matrix P = PT such that all eigenvalues of the symmetric

matrix
1594 9q ’
5 {P[ > (z. E_,)j + P{ . (Z,&)J P}

are negative and separated from zero forall ze€ ® and
E € D. Then the system z = q(z,0)) is noneritically
convergent in the class ID.
We consider Lii systern ™

(15)

X: = a(yt - Xt)
Y; =Xz tcy, (1 6)

r
Z, =Xy, —bx,

We assume Eq. (16) to be the transmitter and we
select its output as:

Y =% a7
Then the receiver equations are
X, =aly, —x,)
Y, =%z toy, tu (1)

r
Zf = Xfyf _bxf

To force the two systems to synchromize, a
comnection 18 needed between the two systems. If the
purpose of the control is to force v~y as t-e, we can add
control terms u into the reveiver system m the form of

uz_Yzl(yr _yr) (19)

First, we check that the receiver system is strictly
semipassive with respect to the input u and output y,
To this end consider the smooth function:

27

V(X.Y.,.2) :%(xﬁ +yi+(z, —a)) (20

Tts time derivative with respect to the uncontrolled
system satisfies:

(a)

2
V=—ax’-y'-b zr—E +b— (21
2 4

Tt is seen that V = ) determines an ellipsoid outside of
which the derivative of V is negative. If K satisfies

K? —1+bmax{l,1} (22)

4 4 a

Then this ellipsoid lies inside the ball
B :{X,y,z:xr2 +y, +(z, —a) < Kzaz} (23)

Which means that all sclutions of the uncontrolled
system approach within some finite time the set defined
by (23). Calculating the time derivative of along solutions
of the system (18) yields

V(Xﬂyr’zr’u):v(xr=yr’zr=0)+yru (24)

Therefore, the function V 1s a storage function which
proves strict semipassivity of the system (18) from the
input to the cutput.

Secondly, we find the zero dynamics by imposing the
external constraints y, =y,

XE =aly, =x,) and X’: =aly, —x,) (25)
Z = XY T bXt o =XY T er
Now we show that the receiver system is

nongritically convergent for any bounded vy, (t). Indeed,
the symmetrized Jacobi matrix for this system has two
eigenvalues -a and -b and, therefore, according to
Theorem 2, there exists a quadratic function which
satisfies Assumption A2 of Theorem1.

Thus, all the conditions of Theorem 1 are satisfied
and coupled Lu systems has an asymptotically stable
compact subset of the set {x, = x,y,=v.z =z}

RESULTS AND DISCUSSION

L System has attractor for some typical parameter
values: a = 36, b = 3, ¢ = 20. The typical L chaotic
attractors is showing in Fig. 1.

In Fig. 2 we show the proposed schema for
synchronization and dispread sequence in CDMA
system.
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Fig. 1: The typical Lii chaotic attractors
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Fig. 4: Phase-space trajectory

The goal is to force the two systems to synchronize
under control, while they have different initial conditions.
The transmitter system stars from [6 -6 5] and the receiver

system from [-3 -2 -4]. We select v, = 4 and use the
controller asin (19): u = -4{v-¥).

In Fig. 3 and 4, we note that the system is quickly and
perfectly synchronized, also the bigger v, give the best
performance.

CONCLUSION

In this study, the problem of controlled
synchronization of Lii system in CDMA satellite
system was presented. passivity nonlinear conirol
techniques are presented and semipassivity technique
was defined to find simple conditions which ensure
boundedness of the solutions of coupled systems. The
Numerical result presented show that system is
quickly and perfectly synchronized with the proposed
method.

REFERENCES

1. Pelton, JN. and R.J. Oslund, 2004. Communi cations
Satellites: Global Change Agents, Awrence Erlbaum
Associates, Publishers Mahwah, New JTersey
London.

2. Vojcic, BR.,L.B. Milstein and R.L. Pickholtz, 1996.
Downlink DS CDMA Performance Over a
Mobile Satellite Channel. IEE Trans. Veh. Tech.,
45: 551-559.

3. De Gaudenzi, R. and F. Giannetti, 1998. DS-CDMA
satellite diversity reception for personal satellite
communication: Satellite-to-mobile link performance
analysis, IEEE Trans. Veh. Tech., 47: 658-672.

4. Chen, G. and X. Dong, 1998. From chaos to order:
Methodologies; Perspectives and Applications,
World Science Publishing Company.

5. Hong, Y., H. Qin and G. Chen, 2001. Adaptive
synchronization of chaotic systems via state or
output feedback control, Int. J. Bifurcation and
Chaos, 11: 1149-1158.

6. Pogromsky, A. and H. Nijmeijer, 2001. Cooperative
Oscillatory Behavior of Mutually Coupled
Dynamical Systems. IEEE transactions on circuit
and systems: Fundamental Theory and Applications,
48:1149-1158.

7. Yu, W., 1999. Passive Equivalence of Chaos in
Lorenz System, IEEE Transaction on circuits and
systems-1: Fundamental theory and applications,
46: 876-878.

8. Polushin, I.G.,D.J. Hill and. A.L. Fradkow, 1998. Strict
quasipassivity and ultimate boundedness for
nonlinear control systems, Proc. 4th IFAC Symp.
Nonlinear Control Systems, NOLCOS 98, pp: 527-532.

9. Kemih, K., 5. Filali, M. Benslama and K. Kimouche,
2006. Pagsivity based control of Lii system, to appear
in ITICIC Journal.



