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Abstract: Monte Carlo simulation experiments were conducted to explore how variability in the maturity
schedule for English sole Pleuronectes vetulus is transformed into variability in estimates of F35%. Random
values were generated for age at 50% maturity and the matunty slope coefficient for each of 10935 combinations
of 8 factors. From these simulated data F..,, values were derived and summarized for each experimental treatment
as an average Fi, value and coefficient of variation. The summary statistics were then transformed and

analyzed using forward stepwise linear regression to determine the relative importance of different factors plus
a quadratic term were required to account for 90% of the variability in the data, whereas in the model for
coefficient of variation in F.,, all eight factors, plus interaction term and a quadratic term, were required to
account for 90% of the vamability in the data. In both models the age at 50% maturity and the age at 50%
selection were the two most important explanatory variables.
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INTRODUCTION

Most fish stocks experience large year to year
variations in recruitment, which are due either to changes
m fishery removals or to changing environmental
conditions. Because of recruitment variability, as well as
the large geographic range and inaccessibility of most fish
stocks, 1t 18 difficult to measure accurately the wvital
characteristics of any given stock, particularly the stock’s
size and growth rate. Success i1 managing a fishery will
depend in large part on the stability of the stocks
supporting the fishery (Gulland, 1983). Many fisheries are
managed using annual quotas that are designed to
produce target fishing rates that will provide a high yield
without causing the stock to be overfished.

These target fishing rates may not be easy to
measure with a high degree of accuracy.

Various methods have been used for calculating
target fishing rates, each has advantages and
disadvantages. The goal 1s to catch a reasonable amount
of fish from the stock but without causing any loss in the
stock's long-term productivity. The mstantaneous rate of
fishing mortality that produces the maximum average yield
in the long term is often described as Fygy (Clark, 1991).
Fisy depends very much on the relationshup between
spawning stock size and the recruitment produced by this
spawning stock, the so-called spawner-recruit relationship
(Beverton and Holt, 1957; Ricker, 1958). For most fish
stocks this relationship has proven to be very difficult to
measure. If recruitment is relatively independent of
spawning stock, then the target fishing rate can be based
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on a yield-per-recruit analysis (Beverton and Holt, 1957).
F... 18 the fishing mortality coefficient that produces
maximum yield per recruit for a given fixed age-at-entry.
Due to its independence from a spawner-recruit
relationship, F,_,, in many cases can be larger than Fyg.,
(Deriso, 1982; Clark, 1991). As an alternative to F ., and
F e Gulland and Boerma proposed F, | which is defined
as the fishing mortality rate for which the slope of the
yield-per-recruit versus fishing mortality curve falls to
10% of its value at the origin. A drawback of F | 1s that it
can cause depletion of the spawning portion of the stock
if the fish recruit to the fishery before they attain maturity
{Clark, 1991; PFMC, 1994).

Clark (1991) proposed a target fishing rate that
overcomes the problems of F_, and F;, and behaves
much better than those targets over a wide range of
circumstances. Clark used simulation models with life
history parameters typical of groundfish species to
determine a target fishing rate that would result m yields
close to the MSY level without depleting the stock or
threatening the spawning biomass. He found that 75% of
the ey could be achieved if the equilibrium spawning
biomass was maintained in the range of 20-60% of the
unfished level and he concluded that in general it was
appropriate to try and maintain the spawning biomass at
35% of the unfished level He defined F,,, as the
instantaneous fishing mortality rate that reduces the
spawning potential per female to 35% of its virgin or
unexploited level. The calculation of F,;, depends on the
age-specific schedules for growth, maturity and
recruttment to the fishery.
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Fig. 1. F,g, is the instantaneous rate of fishing mortality
that reduces the spawning potential to 35% of the
unexploited level. It can be greatly mfluenced by
the maturity schedule

The Pacific Fishery Management Council (PFMC)
uses the F.;, target fishing rate to derive annual catch
quotas for most of the groundfish stocks along the 11.S.
Pacific coast (PFMC, 1994). Many of the groundfish
species in this region are long lived and F..,, values are
typically in the range of 0.1-0.3 per year. In a recent
assessment of the stock of English sole Pleuronectes
vetulus off Oregon and Washington, Sampson (1993)
estimated the F,,,, value to be more than 2.0 year™. He
attributed thus very large ¥, value to the presence of
unusually large numbers of small females that were mature
but unfished. For any given stock the value of F.,
depends on the maturity schedule, which 1s often
estimated from a limited number of samples. An apparent
shift in the maturity schedule 1n the fish can cause a big
shift in the estimated relationship between spawning
biomass and fishing mortality. This leads to an E,
(Fig. 1) with a larger F,,, level associated with earlier
maturation.

Sampson estimated a maturity schedule for female
English sole based on data collected from the commercial
fishery by port agents from the Oregon Department of
Fish and Wildlife. He noted that there had been a large
shift in the maturity schedule compared to data reported
in Harry (1956). Sampson estimated the length at 50%
maturity for English sole to be 23 cm, whereas the data
reported by Harry indicated it to be 30 em. Maturity 1s not
the only potential source of variability in calculations of
Fisor. Weight at age and availability to the fishery are also
important factors. In this study, for simplicity, variability
i the maturity schedule for English sole 1s assumed the
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primary source of variability in the F,.,, target fishing rate
and Monte Carlo simulation techniques were used to
examme the relationship between uncertainty m the
maturity schedule and uncertamty in ¥, but these do not
appear to any published investigations on the sensitivity
of the F.,, target fishing rate to variability in the input
parameters that determine F.., The objective of the
current study 1s to examine how variability in the maturity
schedule for English sole is transformed into variability in
estimated values for F,,.

MATERIALS AND METHODS

Mathematical model for spawning biomass and F,,,: The
main independent variables involved m the calculation of
F.s, are the population numbers at age, the maturity at age
and the weight at age. Each variable has its own set of
input parameters. For convenience the variables and
parameters and the symbols used to denote them, are
listed i Table 1. English sole Pleuronectes vetulus data
collected in 1986-1990 by the Oregon Department of
Fisheries and Wildlife (ODFW) were used to achieve the
objective.

The total spawming biomass was calculated by
summing the spawning biomass component for each age-
class. The spawning biomass for each age group was
calculated using Eq. 1 (Appendix A). For a given
instantaneous rate of fishing mortality (F), the spawning
biomass relative to an unexploited stock is given by the
ratio of the exploited total spawning biomass over the
unexploited total spawning biomass. The F..,, fishing rate
target 1s the value of F that reduces the relative spawning
biomass to 35%.

The population size at age was modeled as a function
of the instantaneous rate of fishing mortality Eq. 2
(Appendix A). Selectivity was modeled as a logistic
function of age Eq. 3 (Appendix A).

In the most recent stock assessment for U.S. west
coast English sole (Sampson, 1993), the fishery selectivity
curve was dome-shaped rather than 3-shaped because the
older fish did not appear to be fully vulnerable to the
fishery. In this study, T elected to use the simpler logistic
model for selectivity because older fish make a relatively
small contribution to the spawning biomass. For example,
based on the demographic parameters used by Sampson
(1993), an unexploited cohort of English sole reaches its
peak spawning biomass at around four years of age and
spawning biomass declines rapidly with age thereafter.

Weight at age was modeled by a von Bertalanffy
growth equation with weight proportional to the cube
of length (Eq. 4, Appendix A), while the proportion
mature at age was modeled as a logistic function (Eq. 4,
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Table 1: Definition of variables and parameters
a Age

m, Proportion mature at age

n, Population number at age

w, Weight at age

sh 8pawning biomass

M Tnstantaneous rate of natural mortality

8, Selectivity coefficient, relative vulnerability to fishing

F Tnstantaneous fishing mortality for fully vulnerable age-classes

A Age at 50% maturity

B Slope coefficient for the logistic maturity schedule

c Slope coefficient for logistic selectivity schedule

D Age at 50% selection

R MNumber of fish recruiting to the fishery

K Growth rate coefficient

W= Average maximum weight

cvdA Coeflicient of variation for parameter A, expressed as a percentage
cvB  Coefficient of variation for parameter B, expressed as a percentage

Table 2: Experimental design

Variables Levels Values

A 5 1 2 345
VA 3 10% 25% 5%
B 3 0.5 1 2

cvB 3 10% 25% 5%
K 3 0.2 025 0.3
C 3 05 1 2

D 3 3 57

M 3 0.2 0.25 0.3

Appendix A). The total spawning biomass is a function of
the instantaneous rate of fishing mortality obtained by
Eq. 5 (Appendix A).

The F.., target fishing rate satisfies the following
equations,

sb (F,.,,) = 0.35 % sb(0)

>R xexp[-(M + By, x5, )xa]x Woox
fl—exp(-Kxa)} xm,}=035x > {Rx
exp(—M xa)x Weox [1- exp(—K xa)] xm,}

The parameters R and Wee canceled from each side to
leave:

> fexp[(-M+ Ey,, x5, )xalx[1-exp(-Kxa)F xm_}

=0.35x% Z{exp(fM xa)x[1-exp(-Kxa)] =m_}

Because F,.. occurs in the summation of several
exponential terms, it is impossible to solve the above
equation directly for Fin,. However, Fiy, can be
determined using numerical techniques, given values for
the parameters (M, A, B, C, D, K.

Variability in any of these input parameters will
propagate into variability in Fag,. The focus of this study
was the relationship between variability in Fis, and
variability in the maturity schedule, which is controlled by
the parameters A and B.
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Monte Carlo experimental design: Monte Carlo
procedures were used to examine the influence on F,,, of
variability in the maturity parameters (A, B). Monte Carlo
methods are general techniques for analyzing the
statistical properties of functions of random wvariables
(Rubinstein, 1981).

For each of the parameters mvolved m the calculation
of Foo, (M, A, B, C, D, K), a range of values was chosen
that would likely encompass ones that would apply to the
English sole fishery off Oregon and Washington. For
example, Sampson (1993) used a value of 0.24 per year for
the growth parameter (K) for this stock and T tried these
values for K: 0.02, 0.25, 0.30 per year (Table 2). Parameters
M, C, D and K were treated as fixed (non-random), but
Parameters A and B were random variables, each with
three levels of relative variability (coefficients of
variation). Parameter A, which represents the age at 50%
maturity, had five levels of expected values. Parameter B,
which controls the slope of the maturity schedule, had
three levels of expected values. The remaining Parameters
each had three levels. In the Monte Carlo experiment, [
examined the influence of 8 factors with a total of 10,935
different combinations (Table 2).

For each of the combinations of factors, T generated
100 pairs of normally distributed random values for the
maturity Parameters A and B and then calculated the 100
corresponding values for Fiy, . The values for A and B
were generated independently of each other. To
summarize the data for each experimental treatment I,
calculated the average and coefficient of variation of the
100 values for F,,, The coefficients of variation were
expressed as percentages rather than fractions.

Because negative values for either A or B would not
be realistic on biclogical grounds, any negative values
that appeared during the generation process were
discarded and replacement values were produced. The tail
area of the normal distribution 1s roughly proportional to
the standard deviation (Neter and Kutner, 1989), hence
negative values for A and B were observed mostly when
one or both coefficients of variation (cvA, cvB) were large
(50%). However, the total number of negative numbers
that were regenerated to positive values was negligible;
less than 1%.

Data analysis: Stepwise linear regression techmques were
used to find relatively simple combinations of factors that
would account for most of the wvariability in the
independent variables; the average F.., (denoted simply
as F..,) and coefficient variation for F.., (denoted as
cvF,s,). However, preliminary examination of the F, ,, and
cvlF,,, data mdicated that they were not normally
distributed as assumed in standard linear regression. As
a consequernce, the F,., and cvF,, data were transformed
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Table 3:  Summary of results from the regression models with all the basic

variables

Tndependent variables treated as

Continuous Discrete
log log
1/ Fas,  (cvFas) 1/ Fas,  (cVFas0,)
Dependent variables d.f R? R? df R? R?
BRasic terms 8 0.90 0.86 18 0.93 0.89
+2 Level interaction 36 0.96 0.86 18 0.93 0.89
+Quadratic terms 44 0.98 0.96 -

prior to the linear regression analyses. Routines from the
Statistical Analysis System (SAS, 1989) were used to
analyze the data.

Model selection: Forward stepwise selection procedures
(Ramsey and Schafer, 1996) were used to determine the
sequence of models of increasing complexity that, for a
given degree of complexity best accounted for the
variability in each of the dependent variables. The
complexity of a model was measured by the coefficient of
determination (R*). Initially the eight factors were treated
as continuous variables. At the first step of the selection
process the factor that produced the largest R’ value was
selected. At the second step of the process each of the
remaining seven factors, plus the square of the factor
selected at the first step, were added to the model and the
new factor (or quadratic term) that produced the largest
increase in R* was selected. Interactions between two
factors were not added to the model at later steps unless
both factors were already m the model as main effects.
This process continued until overall R* values of at least
90% were obtained.

After the last step of the selection process, I
reanalyzed the data with the factors treated as discrete
variables rather than as continuous variables, thereby
relaxing the assumption that the dependent variables
were linear functions of the independent variables.
The difference in R* values between a model with
continuous variables versus the same model with class
variables is a measure of the nonlinearity in the
relationship between the dependent and independent
variables.

To explore more fully the relationship between
model complexity and explanatory power, models were
also fitted to the two independent variables containing
all eight of the basic independent variables. T then
added all pair-wise interactions of the basic variables
and then added quadratic terms for all the basic
variables (Table 3). I also reanalyzed these same sets of
models with the independent variables treated as discrete
variables.
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Appendix A: Mathematical model for spawning biomass

and Fis,

1- Obtamung the spawning biomass (sb) for each age
group
sb, =n_xw_xm,

2-  Obtaining the population size at age
n, =n,xexp[-(M+Fxs, )]

3-  Obtaining the selectivity
s,=1/{l+exp[-Cx(a-D)]}

4-  Obtaiming weight age relation by the von Bertalanffy
growth equation
w,=Wox{l-exp(—Kxa)}

5-  Obtaining the proportion mature at age

m,=1/{1+exp([-Bx{a-A)]}

RESULTS

In 320 of the 10,935 experimental treatments (2.9%),
the coefficient of variation for F,,, was greater than 50%,
which was the largest level of relative variability for A and
B considered in the experiment (cvA, cvB). These
unusually variable cases were almost always associated
with the largest level for the age at 50% selection (D) and
the largest slope coefficient for the logistic selection
Curve (C). They were usually, but not always, associated
with the largest level of the age at 50% maturity (A) and
the two largest levels of relative variability m the age at
50% maturity. In general, larger values of F.,, had larger
relative variability, but the linear correlation of F,, and
cvFse, was only 0.261, indicating that most of the
variability in the values of c¢vF,., could not be accounted
for by varation in F,

The raw data for F,.,, and cvF,.,, was highly skewed
to the right (Fig. 2a and 3a). When the data was
transformed using the natural logarithm function, the
transformed data for cvF,,, became symmetrically
distributed (Fig. 3b), but the transformed data for F,s,
to the night The reciprocal
transformation produced transformed values for Fi.,
that appeared to be more symmetrically distributed
(Fig. 2b) although they were somewhat skewed to the left.
For the linear regression analyses, T decided to use the
logarithmic transformed values of cvF,, and the
reciprocal transformed values of F,,. Relatively few
parameters and independent variables were needed to
explain the variability in the reciprocal transformed values
of Fis, (Table 4). With the independent variables as
continuous variables, a simple linear model with four
terms (one for each of the factors D, A, M, K) explamed
almost 90% of the variability. By contrast it took a model

remained skewed
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Fig. 2b: Reciprocal transformation of the Fi,, data

with 9 terms to account for the same amount of variability
in the logarithmic transformed values of cvF;s,,. In general,
much more complicated models were required to account
for variability in the F,;, data than to account for the
variability in the cvFi,, data. For both independent
variables, the first two factors to enter during the forward
stepwise model building were D and A, which are the
parameters controlling the ages at 50% selection and 50%
maturity.

When I fitted models to (1/F;s,) and log (cvF,s,) in
which all of the 8 basic dependent variables were
included, the pattern of results was similar to the pattern
in the stepwise analyses. For a given level of model
complexity the model for F;s,, had greater predictive power
than the model for cvF,,, Also, there were small
differences in R* value dependent variables that were not
highly nonlinear functions of the basic independent
variables.

In the forward stepwise regression analysis the
following model was found to be the simplest combination
of the independent variables that would account for at
least 90% of the variability in the reciprocal transformed
values of Fis,:
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Fig. 3a: Coefficient of variation in F;s,, (cvF;s,) obtained
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Fig. 3b: Logarithmic transformation of the cvF;;,, data.

Table 4: Summary of results from the forward stepwise regression analyses
Dependent variable: (1 / F3ss,)

Independent variables R? d.f
Continuous D 0.639 1
DA 0.766 2
DAM 0.857 3
DAMK 0.899 4
D AMK D? 0.920 5
Discrete DAMK 0.922 10
Dependent variable: log (cvF;s0,)
Independent variables R? d.f
Continuous A 0.337 1
AD 0.566 2
A D cvA 0.740 3
ADcvAM 0.776 4
ADcvAMC 0.805 5
ADcvAMCD*C 0.846 6
ADcvAMCD*CK 0.867 7
ADcvAMCD*CK cvB 0.888 8
ADcvAMCD*CK cvB A? 0.899 9
ADcvAMCD*CKcvB A’B 0.909 10
Discrete ADcvAMCD*CK ¢vB 0.930 22

(I/Eg)=pn+ By x A+, x D+ By x M+ By x
K+, xD*+¢

Where p is the intercept, the coefficients (B, o, -... Br’)
are estimated parameter values (Table 5) associated with
each of the independent variables, the independent
variables were treated as continuous and € is approxi-
mately distributed as a normal random variant with a mean
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Table 5:  Estimates and standard errors for the selected models for F;s., and
the coefficient of variation in Fjse, (cVF350,)
Variable Estimate Standard error
Dep. Variable: (1 / F;s.,)
Intercept 10.154 0.073
Ba 0.444 0.003
Bo 0.493 0.0256
B -13.045 0.117
Bk -8.79 0.117
Bp? 0.1357 0.0025
Dep. Variable: log (cvFss.,)
Intercept -3.816 0.037
Ba 0.8223 0.011
Bi 0.0634 0.004
Bea 2.649 0.018
B 4.803 0.074
Be -0.751 0.016
Brec 0.208 0.003
Bk 3.68 0.074
Ben 0.907 0.018
B2 -0.066 0.002
Be 0.174 0.005

of zero and a variance of 0.2505. When the independent
variables in the above model were treated as discrete
(class) variables, the R* value increased by only 0.002,
which indicates that the dependent variable (1/F,s,) was
essentially a linear function of the independent variables
A, M and K and a quadratic function of D.

The following model was found to be the simplest
combination of the independent variables that would
account for at least 90% of the variability in the
logarithmic transformed values of ¢vFs,

Log(cvE,) =1+ B, x A+ By xD +B,.4 X VA + B, x
M+ B X C+Bpue xD*C+ B x K+ B, 5 %

cVB+B . xA’+B, xB+e

Where p is the intercept, the coefficients (B,, By, .... Bg) are
estimated parameter values (Table 5) associated with
each of the independent variables, the independent
variables were treated as continuous and € is
approximately distributed as normal random variables
with a mean of zero and a variance of 0.0992. When the
independent variables in the above model were treated
as discrete variables, the R’® value increased by 0.021
(Table 4), which indicates that the dependent variable
(log [cvFis,]) was essentially a linear function of the
independent variables, although the departure from
linearity was ten times greater than the departure
observed in the model for F,,.

The studentized residuals for the two selected
models (Fig. 4 and 5) generally conformed to the pattern
that one would expect to see if the underlying random
errors in the models (the € values) were in fact normally
distributed. These were unusual patterns, however,
particularly for small predicted values of (1/F;s,,) (Fig. 4).
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Fig. 5: Random sample of 30% of the standardized
residuals from the regression model for log
(cvF,,,) with independent variables A, D, cvA,
M, C, D*C, K, ¢vB, A>and B

The large positive residuals for small predicted values of
(1/ F,5,) were generally associated with experimental
combinations in which the age at 50% selection (D) was
equal to 7 (its largest value) and the slope coefficient (C)
was equal to 0.5 (its smallest value). The larger negative
residuals for small predicted values of (1/F,s,) were also
generally associated with combinations in which D was
equal to 7, but in this case C was equal to 2, its largest
value. The model for (1/F,s,) is not very accurate when
the age at 50% selection is large and the slope coefficient
is either very small or very large.
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DISCUSSION

In the forward stepwise analyses, all of the
explanatory variables entering the model for the average
Fix, also appeared in the model for the coefficient of
variation in Fy, (ovF...,). But additional variables were
required to account for the much greater variability in
the cvF,;, data. In both analyses the most powerful
explanatory variables were the age at 50% maturity (A)
and the age at 50% selection (D). Clark (1991) also found
that the age at 50% maturity and selection were important
determinants of F,;,. He showed that F.,,, would be large
if recruitment was delayed relative to maturation because
the fish would then be given time to spawn before
experiencing fishing mortality. However, if maturation
occurred after recruitment, the fish would experience
elevated mortality prior to first spawning so that F,,
would be small.

Tn the model for (1/F.,,,) the first variable to enter was
the age at 50% selection, which alone accounted for 63%
of the variability in (1/F;5,,) and the second variable to
enter the model was the age at 50% maturity, which
accounted for 13% of the variability in the data. There was
a substantial decrease in the predictive power associated
with the variables entering the model after the first two.
Four of the 8 primary explanatory variables never entered
the model. Neither the slope coefficient for the logistic
selectivity schedule (C) nor the slope coefficient for the
logistic maturity schedule (B) had much influence on the
value of F;,,. Also, the relative variability in the maturity
schedule parameters (cvA and cvB) had little influence
which suggests that F..., 1s essentially a linear function of
the maturity parameters A and B.

In the model for log (cvF,s,) all of the eight basic
explanatory variables appeared in addition to an
interaction term (C*D) and a quadratic term (A”). The {irst
explanatory variable to enter the model was the age at
50% maturity (A) which alone accounted for 34% of the
variability in the log (cvFs,,) data and the second variable
to enter the model was the age at 50% selection, which
accounted for 23% of the wvariability in the data. In
contrast to the model for Fis,,, the relative varmability in the
age at 50% maturity (cvA) had moderate influence on the

value of c¢vF;,,. The relative variability m the coefficient

for the maturity schedule (cvB) had only minor influence
on cvF.,, however.

In the Monte Carlo experiments the random values
for A and B were chosen mdependently of one another,
i.e., they were uncorrelated. Tn general, estimates of A and
B would be derived from the same data and would tend to
be correlated. Given that the selected model for F.,, did
not contain terms for B, cvA, or cvB, it seems likely that
correlation between A and B would have little effect on
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this model. In the selected model for cvF,,,, the terms for
B and cvB were of relatively minor importance, so that
correlation between A and B would probably not have
much effect on this model either.

For the F,.,, target fishing rate to be an effective tool
in  fisheries management, 1t should be robust to
measurement errors in the data from which it is derived.
For example, if measurement errors in the maturity
schedule are amplified during the calculation of F,.,,, then
catch quotas subsequently derived using an maccurate
Fs, value might be so large that they would jeopardize
the spawning potential of the fish stock, or they might be
unnecessarily small and cause economic hardship to the
fishermen. In the Monte Carlo experiments the coefficients
of variation in F;;, were generally smaller than the
coefficients of variation m the maturity schedule
parameters but there were instances in which the relative
variation mn the maturity parameters was greatly amplified.
For example, 50% relative variability in A and B produced
179% relative vaniation in F,, for one of the experimental
treatments observed in this study. Tt seems unlikely for
this particular case that F.;,, would be an effective target
for management. Before fishery managers routinely accept
estimates of F.,, the estimates should be crtically
evaluated to establish that they are not overly sensitive
to measuremernt eIrors.
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