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Abstract: Robust Parameter Design (RPD) is an engineering methodology intended as a cost effective approach

for improving the quality of products and processes. An essential component of robust parameter design

mvolves the assumption of well estimated models for the process mean and variance. In this study, researchers
examine the effect of three factors, temperature, time and liposome on the results of color strength (K/S) in dying

process of wool fibers by application two different methods, namely; parametric and nonparametric to modeling

a dual response surface (mean and variance) and then optimize this process in both methods within the robust

design setting. Comparing the results suggest the relative superiority of nonparametric method in terms of SEL.
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INTRODUCTION

Tn the mid 1980, Japanese quality consultant Genichi
Taguchi popularized a cost efficient approach to quality
umprovement known as Robust Parameter Design (RPD).
The goal RPD 1s to determine levels of the control factors
which cause the response to be robust to changes in the
levels of the noise variables. Variation in the process
which results from uncontrollable fluctuations i the noise
factors can be summarized by taking the sample variance
of the points in the noise factor space at each of the
control factor setting. The process can be made robust to
the variation associated with the noise factors by
choosing the factor combination of the control factors
corresponding to the smallest sample variance. It 13 often
the case that the levels of the noise factors are
unobservable not only in the process but also mn a
controlled experimental setting. In these situations,
replications at the control factor setting provide the
researcher with an idea of process variability and the
approach to robust design 1s the same namely to choose
the factor combmation m the control factor space which
corresponds to the smallest sample variance. Tt is these
types of situations which will be the focus of this study.
Instead of using only the sample variances for describing
the underlying process variance, Vining and Myers (1990)
introduced a dual model response surface approach to
RPD in which it is assumed that both the mean and
variance can be described by separate parametric
regression models. Optimal control factor settings are
then found using constrained optimization (constrained
estimated mean and minimized process variance with
respect to control factor settings).
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If one or both models are misspecified by the
researcher, the estimates may be highly biased and
consequently the optimal control factor settings may be
misspecified. Vining and Bohn (1998) (henceforth referred
to as VB) pomt out that traditional parametric models are
often inadequate particularly when modeling the variance
and suggest the use of nonparametric technicques for
modeling the variance.

In thus study, researchers examine the effects of three
important factors i dying process of wool fibers, namely;
temperature, time and liposome on the results of color
strength (K/S) as response variable. To this purpose,
researchers modeling the mean and variance of this
process with a dual model response surface by using of
both parametric and nonparametric methods and then
obtain operating conditions of this process where the
process variance 1s mimmized and the process mean
achieves a given target value. The Central Composite
Design (CCD) is used for the experimental plan and to
produce representative data. The results of both methods
are compared in terms of SEL. Researchers also use of a
more flexible and efficient optimization routine the Genetic
Algorithm (GA) for determining optimal control factor
settings.

Researchers note that commercial liposome recently
were incorporated into textile auxiliaries, mainly for wool
dyeing (Coderch et al., 1999). This is a clean technology
that has already been adapted by some textile industries.
These are additional benefits for material weight yield
durmg  subsequent spmning. These improved
smoothness and mechanical properties of the dyed
textiles and showed a clear reduction in the contamination
load of the dye-baths (Leeder, 1986). Use of liposome as
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an auxiliary in wool dyeing can be related to the bilayer
structure of lipids from the Cell Membrane Complex
(CMC) of wool that is similar to the liposome and the
action of this morphological fraction of the fiber in wool
processing. A wool fiber includes of cuticle and cortical
cells held together by the CMC and forms the continuous
phase in the keratin. This phase contains a small amount
of lipid material. Diffusion properties of wool fibers are
influenced by the lipid structure of the intercellular spaces
that could act as solvents for hydrophobic chemical. The
dyes diffuse with ease into swollen regions such as the
CMC (mntercellular diffusion) rather than through the
cuticle cells (transcellular diffusion).

Last few years, several studies have related the
potential application of liposome in wool dyeing. Meza
have mvestigated liposome as doer n wool dyeing with
acid (De la Maza et al, 1993, 1995a, b; 1997) disperse
metal complex dyes. Also they have worked on the effects
of commercially available liposome as a simple additive.
Recently, they used an optimized mixture of commercial
liposome and cationic surfactant to improve leveling
property. In the previous research, the influence of
temperature on stability of Multilamellar Liposome (MLV)
mn wool dyeing was studied and it was found that the
presence of 1% owf (on weight of fabric) of liposome at
85°C could improve the dye exhaustion of Irgalan Blue
FBL on wool fabric. Tt has also reported that the wash
fastness properties of dyed samples with liposome have
also improved. There is no report on using liposome in
wool dyeing with natural dyes. Therefore, researchers try
to prepare and produce MLV from Soya lecithin with 75%
phosphatidylcholine and study the influence of liposome
in dye bath at different and concentration during wool
dyeing with madder as a most famous natural dye.

MATERIALS AND METHODS

The wool fabric with plam woven structure from
48/2 Nm yarns was supplied by Iran Merino. The fabric
was scoured with 1% anionic detergent VEROLAN-NBO
(supplied by Rodulf) at 70°C for 45 min and then washed
with tap water and dried at room temperature. Industrial
grade of aluminium sulphate was used for mordanting of
wool samples. Soya lecithin (contaming 75%
phosphatidylcholine) with phase Transition temperature
(Tc) of -18°C was gifted by Lipoid (Germany). Madder was
prepared from Yazd providence of Tran. The reflectance
spectra of the dyed samples were recorded on an ACS
Spectra Sensor [T integrated with an TBM-PC.

Liposomes preparation: MLV liposomes were prepared
following the thin film hydration method. A lipid film was

formed by removing the organic solvent with rotary

100

evaporation (with temperature of bath being 35-40°C and
30 rpm) from a chloroform selution containing Soya
lecithin. Aqueous phase containing distilled water was
added to the lipid film. The solution was shaken by hand
to deliver the lipid from the walls of flask and disperse
large lipid aggregates, glass beads were added to facilate
dispersions. The milky suspension was agitated at 40°C
to obtain a complete emulsion. This means that the lipid
extensively hydrated and MLV liposomes formed
(Montazer et al., 2006).

Preparation for dyeing: Before dyeing, the wool samples
should be cleaned to prepare the samples free from the
impurities. Therefore, the samples are scoured in first step
and then dyed later. Also, the dyestuff should be ready
for process too. Researchers can extract dyestuff from the
natural collected madder.

Scouring: The samples were scoured in a bath containing
1 g L™ anicnic detergent, 1 mL L™ ammonia (pH = 8.5) in
70°C for 45 min with liquor-to-goods ratio (L:G) of 40:1.
The samples were then rinsed with warm water (60°C) and
tap water and then dried at room temperature.

Dyestuff extraction: For extraction of dyestuff the madder
were steeped in water solution for 24 h and then heated at
70°C for 20 min and the solution was then passed through
the filter. The filtered solution was transferred to a
glassing flask. The solution of dye was concentrated by
removing the water with rotary evaporation.

Mordanting: The scoured samples (L.G = 40:1) were
steeped in the mordant bath prepared with 20% owf of
aluminium sulphate with pH = 4.5-5.8 (adjusted by acetic
acid).

Mordanting of sample was
temperature and the temperature was raised for 2°C min™
to boil and heated for 60 min. The samples were rinsed
with tap water and dried at room temperature.

started at room
1

Dyeing: The mordanted wool samples were steeped in the
dye bath with liquor-to-goods ratio of 40:1 that was
prepared by 2% owf of extracted dye at pH 4.5-5.5 (acetic
acid) with different concentrations of freshly prepared
MLV liposome (1, 2, 3% owf).

Dyemng was started at room temperature and then
raised 2°C min~" to the final desired temperature. The
dyeing was carried out with liposome n various times of
30, 45 and 60 min. The samples were rinsed with tap water
and dried at room temperature. The amount of reflectance
was selected at the maximum wavelength and the K/5
value which is of the type the larger the better was
calculated according to the Kubelka-Munk equation:
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K/S=(1-R)' /2R

Parametric approach: Given the data from a crossed
array, there are a number of potential approaches to
directly modeling the mean and variance as a function of
the control factors. A general approach is to assume that
the underlying functional forms for the mean and variance
models can be expressed parametrically. Assuming
a d point design with n; replicates at each location
(i=1,2, ..., d)the point estimators of the process mean
and variance y; and S7, respectively form the data for the
dual response system. Since, the purpose of this study is
to demonstrate the utility of a hybnd approach
(combining a parametric and nonparametric approach to
modeling) for robust design researchers will consider an
off the shelf model for the mean. An off the shelf model
for the process mean is linear in the model parameters and
can be written as:

i

xl*;y)z—:i (1)

Means model : ; =xp+ g”z (

Where x', and %, are 1>k and 1] vectors of means
and variance model regressors, respectively expanded to
model form P and v are k=1 and mx1 vectors of mean and
variance model parameters respectively, g is the
underlying variance function and denotes the random
error for the mean function. The g, are assumed to be
uncorrelated with mean zero and variance of one. Note
that the model terms for the ith observation in the means
model are denoted by x', while the model terms for the
variance model are denoted by x;". This allows for the fact
that the process mean and variance may not depend on
the same set of regressors.

Similar to the modeling of the mean, various modeling
strategies have been utilized for estimating the underlying
Bartlett and Kendall (1946)
demonstrated that if the errors are normal about the mean
model and if the design points are replicated the variance
can be modeled via a log-linear model with the sample

variance function.

variances utilized for the responses. A great deal of study
has also been done using generalized linear models for
estimating the variance function. Although not an
exhaustive list, the reader 13 referred to Box and Meyer
(1986), Aitlan (1987), Grego (1993), Lee and Nelder (2003)
and Myers et al. (2005). As mentioned before since, the
purpose of this study is to demonstrate the utility of a
hybrid approach to modeling researchers choose an off
the shelf approach to variance modeling. The log-linear
model proposed by Bartlett and Kendall (1946) is a
popular one (Vining and Myers, 1990; Myers and
Montgomery, 2002) and is written explicitly as:
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Variance model : ln(sf ] =g (Xl*) 1, = Xfy +n, (2)

Where 1, denotes the model error term whose
expectation 1s assumed to be zero and whose variance 1s
assumed constant across the d design points.

Assuming the model forms for the mean and variance
given in Eq. 1 and 2, the model parameters are estimated
using the following Estimated Weighted Teast Squares
(EWLS5) algorithm:

Step 1: Fit the variance model (s')=(xy)+n via
Ordinary Least Squares (OLS)  obtaining
g,(OLSL(X'*X*)'I x'y" Where v is the dx1 vector of log
transformed sample variances

Step 20 Use é&l=exp(x79°)) as the estimated
variances to compute the dxd estimated variance

the

covarlance matrix for model

V= diag(&f,ag,......,ég)
Step 3: Use V' as the estimated weight matrix to fit
the means model yielding gEws) _ (Xp{]_lx)*lx.{,_l, where

means
- v
¥ denotes the dx1 vector of sample averages

The algorithm above yields the following estimates
of the process mean and variance functions:

](EWLS) — B(EWLS) (3)

)

(4

Once estimates of the mean and variance have been

Estimated process mean : ]:Z\[y1

Estimated process variance : Var[y, ](OLS) = exp(xz*"?(ow)

calculated, the goal becomes finding the operating
conditions for the control factors such that the mean 1s as
close as possible to the target while maintaining minimum
process variance.

Any control factor which influences the expression
in Eq. 4 is known as a dispersion factor. Any control
factor that does not influence the expression m Eq. 4 but
does influence the expression in Eq. 3 is known as an
adjustment factor. When both dispersion and adjustment
factors are present, the robust design problem can be
approached in a two step fashion. Specifically, levels of
the dispersion factors are chosen so as to minimize the
estimated process variance in Eq. 4 and then the levels of
the adjustment factors are chosen so as to bring the
estimated process mean in Eq. 3 to a desired level. If only
dispersion factors are present and these factors also
influence the process mean, the researcher 1s left with
finding the levels of the control factors that yield a
desirable trade-off between low varance and a deviation
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from the targeted mean. This is often accomplished via
minimization of an objective function such as the Squared
Error Loss (SEL):

SEL=E[y(x)-T] = E[y(x)]-T} + Vary(x)|®)

Where T denotes the target value for the process
mean Mimmization can be accomplished via non-linear
programming using a method such as the generalized
reduce gradient or the Nelder-Mead simplex algorithm.
The SEL approach is also useful when adjustment factors
are present but are not strong enough to bring the mean
to the targeted value. Note that the determined set of
optimal operating conditions 15 highly dependent on
quality estimation of both the mean and variance
functions. Misspecification of the forms of either the
mean or variance models can have serious implications in
process optimization.

Nonparametric approach: Situations may arise in which
the user cannot explicitly state parametric forms for the
dual model. In these situations, parametric specifications
may result in serious bias of the estimated mean and/or
variance. To prevent the bias induced by parametric
model misspecification, VB and Anderson-Cook and
Prewitt (2005) (henceforth referred to as AP) suggest the
use of nonparametric regression for estimating the
process mean and variance. Expressing the dual model
where the mean and variance functions (h and g,
respectively) are assumed to have unknown but smooth
forms, researchers have:

Model mean :y, = h(x!)+g"? (xi )S-

1

Variance model: In(s] ) = +g (x" )+ m,

Similar to parametric regression, estimators are linear
combmations of the response values ¥ and (<) however
the weighting schemes in some nonparametric regression
methods assign more weight to observations closest to
the point of prediction %,. The nonparametric fits are more
flexible than the parametric fits as they are not confined to
the users specified form. This enables the nonparametric
approach to more adequately fit processes whose
underlymng models have more complicated forms than
those expressed by the linear models inEq 1 and 2.
Several fitting techniques have been proposed in the
nonparametric regression literature such as kernel
regression (Nadaraya, 1964; Watson, 1964; Priestley and
Chao, 1972; Gasser and Muller, 1984) local polynomial
models (Fan and Gijbels, 1996) spline based smoothers
and series-based smoothers (Ruppert et al., 2003). VB first
applied nonparametric smoothing in the RPD setting by
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using the Gasser-Muller estimator for the dual response
problem. AP continued with this idea by using the
Nadaraya-Watson estimator and TLocal Polynomial
Regression (LPR) the method used in this research. LPR
15 a popular class of nonparametric smoothing methods
and is particularly appealing in response surface
applications due to its robustness to biased estimates at
the boundary of the design space. LPR 15 essentially a
Weighted Teast Scuares (WLS) problem where the
weights are given by a kernel function. The polynomial
form of the local polynomial fit can be of order one or
greater and researhers focus on degree p =1, Local Linear
Regression (LLR) in this study.

For the multiple regressor case at point x, = (X, Xp,
, Xg) Where prediction is desired researchers define the
kernel function as:

Where 2 =(%%g»%,) ,K(%,;-%;/b) i3 a univariate
kernel function b 1s the bandwidth. When estimating both
the mean and variance nonparametrically a different kernel
function may be used for the mean than for the variance

L. 15 b
K{%, fxl):b—kHK

1=t

0j

b

i

(6)

since the regressors effecting the mean do not necessarily
effect the variance. The choice of kemnel function is not
crucial to the performance of the estimator (Simonoff,
1996). Thus for convenience researchers will use the
simplified Gaussian kernel x(u)=¢™ .

The smoothness of the estimated function is
controlled by the bandwidth b. Since, the coding of
variables in response surface designs typically involves
centering and scaling the units are comparable in all
directions. Thus, it 18 reasonable to use the same
bandwidth b, in all dimensions as expressed in Eq. 6. The
choice of bandwidth is critical and the literature is
rich with bandwidth selection methods (Hardle, 1990,
Hardle et al, 2004). Typically, the bandwidth is
chosen to minimize some optimality criteria such as MSE.
Mays et al. (2001) introduce a penalized cross-validation
technique PRESS™ for cheosing an appropriate
bandwidth. The approach chooses the bandwidth as the
value b that minimizes PRESS” defined as:

PRESS
d- trace(H(LLR))+ (d—(k+ 1))

PRESS” =

SSE,_ — SSE,
SSE, .

Where SSE,_. 15 the largest error sum of squares over
all possible bandwidth values, SSE, is the error sum of
squares associated with a particular bandwidth value b, k
is the number of regressors and the prediction error sum
of squares PRESS is given by:
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PRESS = Xe? (i) = Zd‘,(y - 5/,,71)2

1=1
where, ¥:2 denotes the estimated response obtained by
leaving out the ith observation when estimating at
location %, The LLR smoother matrix H** is defined as:

’h(LLR)’ T
1
(LR
hz

H(LLR) _

(LLR)"
,hd i

Where N, defined in the study. MBS show that
PRESS “performs well by guarding against very small and
very large bandwidths.

The nonparametric estimate of the dual model 1s
found by first estimating the underlying variance function
and then using the estimated variances as weights an
Estimated Weighted Local Linear Regression (EWLLR) fit
is found for the mean. For more information regarding
welghted LLR the reader 1s referred to Lin and Carroll
(2000). Expressions for the fits are provided as:

(EWLLR) _ (EWLLR) _ _«
X =X

Estimated process mean : ]:Z(yU ) '

(KW )XWy =T

(7
Estimated process varience: Var(y, )(LLR) = exp(x'n*ff@m))

W, y*}: exp(h"y)
(8)
= X‘ .

wf e xy7l
= eXP{X'n (X' WX ) x'
Regardjng notation for the means fit h,®"®

(XWX XW
<Jh(KER)> <Jh(KER)>

Where (Vh,"®} the diagonal matrix containing the
square roots of the kemnel weights associated with x,.

(V0 ) = diag (V1™ Thy, 5, L hy <) with:

cl(
ZK

1=

\_/

(KER) _
h[l1

And ¥ is the estimated variance-covariance matrix:

;)

4 2 a2

V= diag(c“rl, 2o e O3

Regarding notation for the varance fit:
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hR = (X'*WDX* )71 W,

and W, is the diagonal matrix containing the kernel
weights associated with x;. Under the assumption of
normality of ¥ and ¥ the estimates of E [y,] and Var [y,]
given by Eq. 7 and 8 are the local maximum likelihood
estimates of Fan et al. (1995).

Similar to the parametric approach to robust design
once estimates of the mean and varance functions have
been calculated a squared error loss approach will be used
for process optimization. Unfortunately, most of the
analytic optimization methods suggested for the
parametric approach are based on gradient techniques
which require continuous functions with derivatives for
the estimated mean and variance functions. Since, the
mean and variance estimates from nonparametric methods
do not result m closed form expressions, these
optimization routines are no longer applicable. VB utilize
a simplex search based on the AMOEBA algorithm
(Vetterling et al, 1992) which does not require the
calculation of derivatives however simplex methods tend
to be time consuming and often find loca as opposed to
global optima (Haupt and Haupt, 2004). Therefore,
researchers advocate the use of Genetic Algorithms (GA)
for optimization.

The GA, originally developed by Holland (1975) has
become a popular optimization technique. Tt is especially
useful for optimizing functions that do not have known
parametric forms as it does not require derivatives to find
the optimal solutions. Instead, the GA 15 based on the
principles of genetics and uses evolutionary concepts
such as selection, crossover and mutation to find the
optimal solutions. Furthermore, GA uses an intelligent
sequential search strategy which enables the user to find
global not local solutions more efficiently. Thus,
researchers will use the GA for process optimization.
Parametric vs. nonparametric: Parametric and
nonparametric approaches to modeling each possess
positive and negative attributes. The parametric method
is superior if the true, underlying functions can be
adequately expressed parametrically and if the user
correctly specifies the parametric forms. However, if either
of the models is misspecified the estimates may be highly
biased and optimal control factor settings may be
miscalculated. On the other hand if the user has no idea
about the true form of the underlying functions
nonparametric methods  offer
Nonparametric methods can provide superior fits by
capturing structure in the data that a misspecified
parametric model nonparametric

a mce alternative.

cannot. However,
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methods were originally developed for situations with
large sample sizes whereas a main underpinning of RSM
15 the use of cost efficient experimental designs (1.e., small
sample sizes). In small sample settings, nonparametric
fitting techniques may fit wregularities m the data too
closely thereby creating estimated mean and variance
functions that are Iughly variable. Consequently,
optimization may be based on non-reproducible
idiosynerasies in the data.

Experimental design: The Central Composite Design
(CCD) 1s used for experimental plan with three factors,
temperature (A), time (B) and liposomes amount (C) on the
results of color strength (K/S). The ranges of these
factors are shown in Table 1 and details of this design are
showed in Table 2.

In Table 2, x,-x, are the coded variables that
represents temperature, time and liposomes amount,
respectively and y,, 1 = 1, 2, 3 denotes the amounts of
color strength (K/S).

Five levels of each factor are involved in this design.
The coded and natural levels are given by the following:

RESULTS AND DISCUSSION

In order to use parametric approach to analyze the
experiments shown in Table 2. Researchers consider a first
order model for the log transformed variance model and a
second order model for the mean. Table 3 and 4 shows the
resulting ANOVA tables for the process variance and
mearn.

Considering target value 30 (K/S) in SEL objective
function and using the estimated mean and variance
functions as shown in Table 3 and 4, researchers obtain
in parametric approach by GA algorithm the optimal factor
settings of A = 95°C, B=20min, C = 0.51 mg mL " which
has an estimated SEL of 14.9 (a predicted response of 26.4
and a predicted process variance of 1.88). As Table 1
shows the computed adjusted R-squared in variance
model 15 low (0.42). Therefore, this model cammot be a
proper enough one. This may be reason for using the
nonparametric approach in the data of Table 2.

In nonparametric approach, researchers need to
specify a three-dimensional kernel function and
bandwidth vector. Researchers consider product kemels

because of the cuboidal design region and use the same

-1.6820 -1.0000 0.000 1.000 -1.6820 kemelj Kl (X) = K2 (X) = K3 (X) and the same bandwidth bl
2 ;g:gg ;3 88 iz: 38 28: 88 gg:gg = bz. = b, for c?ach factor. Using PRESS , Tesearchers
% 0.32 1.00 200 3.00 168 obtain a bandwidth of 0.31 for both variance and means
models. In this approach researchers obtan by GA
Table 1: Ranges of factors algorithm and considerin targe t-value 30 (K/S) in SEL
Factors Name Units Lowerlimit _ Upper limit objective function the optimal factor setting of A = 95°C,
g ?mperatum ‘. 3 20 B =20min, C=0.32mg mL ™" which has an estimated SEL
me min 30 60
C Liposomes mg mL"! 1 3 of 4.9 (a predicted response of 282 and a predicted
Table 2: Central composite design for dyeing of wool with madder
Run number X X, X3 ¥y ¥y ¥y ¥ E
1 -1.000 -1.000 -1.000 TI0S 757 10/30 8.31 1/75
2 1.000 -1.000 -1.000 25110 22/60 24/18 23.96 126
3 -1.000 1.000 -1.000 14/40 13/66 16/46 14.84 1/45
4 1.000 1.000 -1.000 24/80 22/25 24/47 23.94 1/22
5 -1.000 -1.000 1.000 827 704 9/50 927 1/23
6 1.000 -1.000 1.000 21/43 23/75 23/55 22,91 1/29
7 -1.000 1.000 1.000 18/79 16/00 18/63 17.81 1/57
8 1.000 1.000 1.000 21/54 22/77 23/64 22.65 1/06
9 -1.682 0.000 0.000 10.15 10/33 748 932 1/60
10 1.682 0.000 0.000 23/18 23/75 20/92 22.56 1/43
11 0.000 -1.682 0.000 19/26 16/62 19/41 18.43 1/57
12 0.000 1.682 0.000 23/25 25/19 25/38 24.61 1/18
13 0.000 0.000 -1.682 19/22 16/95 19/67 18.62 1/46
14 0.000 0.000 1.682 21/67 21/60 19/43 20.90 127
15 0.000 0.000 0.000 20/00 22/18 19/61 20.60 1739
16 0.000 0.000 0.000 21/79 19/88 19/43 20.37 1/25
17 0.000 0.000 0.000 20.94 22/28 19/60 20.94 1734
18 0.000 0.000 0.000 20/06 20/03 22/43 20.84 1/38
19 0.000 0.000 0.000 20/07 22/30 19/72 20.70 1/40
20 0.000 0.000 0.000 19/36 21/19 21/83 20.79 1/28
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Table 3: ANOVA table for the log transformed variance model
Anatysis of variance

Sources df Sum sq. Mean sq. F-value Pr (=F)
¥ 1 0.137787 0.137787 9.6635 0.006757**
X3 1 0.051640 0.051640 3.6217 0.075180
X3 1 0.047213 0.047213 33112 0.087568
Error 16 0.228135 0.014258 - -
Parameter estimates
Variables Estimate SE t-value Pr =t
(Intercept) 1.42176 0.09736 14.604 1.14e-10%**
% -0.33607 0.10811 -3.109 0.00676**
X3 -0.20574 0.10811 -1.903 0.07518
X3 -0.19672 0.10811 -1.820 0.08757

Multiple R*: 0.5091; Adjusted R?: 0.4171; F-statistic: 5.532 on 3 and 16
df: p-value: 0.008439

Table 4: ANOVA table for the mean model
Analysis of variance

Sourrce  df Sum sq. Mean sq.  F-value Pr (=F)
% 1 140.397 140397 254.1559 1.944e-08 i
X3 1 21.818 21.818 39.4957 9.088e-05%#*
X3 1 0.668 0.668 1.2086 0.2973671
Xp.%; 1 15439 15.439 27.9487 0.0003542 ##*
X1.X3 1 2.587 2.587 4.6827 0.0557359
X3.X3 1 0.094 0.094 0.1695 0.6892641
X1.X1 1 30.266 30.266 54,7894 2.310e-05%**
X%, 1 0.199 0.199 0.3597 0.5620303
X33 1 1.832 1.832 3.3168 0.0985818
Residuals 10 5.524 0.552

Parameter estimates
Variables Estimate SE t value Pr lth
(Intercept) -4.733 2342 -2.021 0.070859
X 53.441 4.387 12.181 2.54e-(7***
Xz 14.547 4.355 3.340 0.007487+%*
X3 10.344 4.353 2.377 0.038841*
X133 -21.065 3.971 -5.305 0.00034 5%
X133 -8.827 3.970 -2.224 0.050388
X0 X5 1.726 3.952 0437 0.671567x,%,

-22422 3.005 -7.461 2. 16e-05**
X353 1.290 3.004 0.429 0.676780
X3.X3 -5470 3.003 -1.821 0.098582

Multiple R?: 0.9748; Adjusted R* 0.952; F-statistic: 42.9 on 9 and 10 dft
p-value: 8.134e-07

process variance of 1.12). The dual model response
surface approach to RPD has been shown to study well
when the variance of response 1s not constant over the
experimental region and can be successfully modeled
using regression methods.

One that optimization
depends too heavily on the assumption of well estimated

drawback however 1s
models for the process mean and variance and it 13 often
the case that user specified parametric models are not
flexible enough to adequately model the process mean
VB and AP suggest the use of
nonparametric smoothing when the user is unable to

and variance.

specify the explicit forms for the mean and/or variance
functions.
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Using the dying process data showen in Table 2 to
compare the parametric and nonparametric approaches
researchers find that the nonparametric approach
performs best in terms of SEL.

CONCLUSION

The optimization based on the nonparametric
approach recommends control factor setting which result
in the estimated mean being closer to target as well as the
smallest estimate of process variance.
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