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Limit Analysis of Oscillating Batch Arrival M*/G/1
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Abstract: An oscillating M/G/1 Systems with finite capacity and batch arrivals 1s considered under partial batch
acceptance strategy. Applying the Theory of Markov Regenerative Processes and resorting to Markov chain
embedding the limit distributions of the number of customers in the system is obtained where no assumption

on the batch size distribution 1s made.
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INTRODUCTION

One way to increase server utilization while keeping
customer waiting times under control is to consider
queueing systems whose characteristics (such as service
rate or input rate) depend on the evolution of the state of
the system (such as the number of customers m the
system or the workload). For instance, Choi et al.
(2001,1999), Harris (1967, 1970), Larsen and Agrawala
(1983), Ramalhoto (1991), Rhee and Sivazhan (1990) and
Welch (1964) studied queueing systems whose service
characteristics depend on the evolution of the number of
customers in the system. Chydzinski (2003) and Takagi
(1985) studied queueing
depending on the evolution of the number of customers
in the system. Ivnitskiy (1975), Li (1989) and Lu and
Serfozo (1984) studied queueing systems with mput rates

systems with input rate

and service rates depending on the evolution of the
number of customers in the system. Altman and
Jean-Marie (1998) studied queueing systems with
workload dependent service times and Bekker et al. (2004)
and Golubchik and Lui (2002) studied queuveing systems
in which the arrival rate and service rate depends on the
workload in the system. In this study, the researchers
investigate the limit distribution of the number of
customers in oscillating batch arrival M™/G/1 Systems
with fimite capacity. The researchers use the term (service)
oscillating systems in the sense used by Bratiychuk and
Chydzinski (2003) and Chydzinslki (2002, 2004), i.e.,as a
queueing systems that oscillates between two operating
phases 1 and 2 which unpact the service rates or service
characteristics as described.

The limit distribution of the number of customers in
a queueing system is an important characteristic of the
system as 1t provides information about the evolution of
its congestion level over time. Federgruen and Tiyms
(1980) compute the limit distribution of the queue length
in oscillating M/G/1 Systems recursively by using the
Theory of Markov Regenerative Processes (MRGP).
Bratiychuk and Chydzinski (2003) and Chydzinsk: (2002)
have addressed the limit analysis of the number of
customers in oscillating systems with infinite capacity and
Chydzinska (2004) has studied steady state characteristics
of oscillating systems with smgle arrivals and fimte
capacity by means of the potential method.

In general terms when an oscillating systems is in
phase 1 the number of customers moves between O
and b-1 and when it 1s in phase 2 the number of customers
moves between a+1 and n, O<a<b<n with the mtegers a
and b denoting the lower barrier and the upper barrier of
the system, respectively. More precisely if at time t the
system 1s operating in phase 1, so that the number of
customers in the system is smaller than the upper barrier
b then the system remains in phase 1 until the first
subsequent epoch at which the number of customers in
the system becomes greater or equal to the upper barrier
b. At this epoch, the system changes to phase 2 and
remains in this phase until the first subsequent epoch at
which the number of customers mn the system becomes
(smaller or) equal to the lower barrier a at which time the
system changes again to phase 1 and so on.

The researchers consider two types of oscillating
systems, T and TT that are characterized in terms of two
distribution functions A, and A, as follows; in a type L
system, a customer service time that is initiated in phase
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J has distribution A; and j = 1, 2 is independent of the
customer arrival process and of previous customer service
times.

In a type IT system, a customer service initiated in
phase 2 has customer service time distribution A, and 1s
mdependent of the customer armmival process and of
previous customer service tiumes. Conversely, even
though a customer service imtiated in phase 1 1s started
with service tune distribution A,, mdependent of the
customer arrival process and of previous customer service
times if before this time has elapsed the system moves to
phase 2 (due to the number of customer in the system
becoming greater or equal to the upper barrier b) then a
reset of the service is done at the instant the system
changes phases and an additional time with distribution
function A, is added to the customer service time with
this time bemng independent of the customer arrival
process and of previous customer service times.

Type I oscillating systems have been addressed by
several researchers including Bahary and Kolesar (1972),
Choi and Choi (1996), Sriram ef al. (1991), Loris-Teghem
(1981), Bratiychuk and Chydzinski (2003), Choi ef al.
(1999) and Federgruen and Tijms (1980). In particular,
type T oscillating systems propose (Choi and Choi, 1996;
Choi et al, 1999; Sriram et al, 1991) the analysis of
cell-discarding schemes for voice packets in ATM
networks by allowing dropping of low-priority (less
significant) bits of information during congestion periods.
It 1s noted that L1 (1989) uses similar models for overload
control in message storage buffers such that both the
mput and service rates or characteristics may depend on
the phase of the system.

In addition, type 1T oscillating systems coincide
with the queueing systems defined in Chydzinski (2002,
2004).

In this study, the researchers address oscillating
batch arrival M™/G/1 Systems with finite capacity n.
These are queueing systems with a single server at which
customers arrive in batches with independent and
identically distributed (iid) sizes, according to a poisson
process.

The sequences of batch sizes and batch interarrival
times are independent and the system has fimte capacity
n mncluding the customer in service if any.

As regards the customer acceptance policy, it is
considered what partial  blocking
(Vijaya Laxmi and Gupta, 2000) in which if at arrival of a
batch of 1 customers there are only m, m<1, free positions
available in the system then m customers of the batch
enter the system and the remaining 1-m customers of the
batch are blocked.

13 known as

30

The approach to investigate the limit distribution of
the state of the system based on the fact that the state
process 1n these systems constitutes a MRGP associated
with appropriate Markov renewal sequences by means of
the imbedded Markov Chain (EMC) (Kendall, 1951, 1953).
Specifically, the information on the state of the system in
contimious time 1s obtained from the analysis of the
embedded Discrete Time Markov Chaing (DTMCs)
associated with the sequence post-customer departure
nstants.

The researchers remark that other researchers have
used the Theory of MRGP to derive recursive relations in
M/G/1 Systems, e.g., Fakinos and Economou (2001) and
Federgruen and Tims (1980).

NOTATION

It is denoted that the oscillating batch arrival MF/G/1
Systems with fimite capacity n and with lower barrier a and
upper barrier b as M™/G,-G./1/n/(a, b) Systems, the
service times oscillate between two forms according to
evolution of the number of customers in the system as
described m the mtroduction.

Let A denote the batch arrival rate and (f.),, denote
the batch size probability function where N, = {1, 2, 3,.}
and £9 denotes the probability that the total number of
customers 1n r customer batches 13 equal to 1. Note that
£ =8, and:

i-1
0 _ (r-1) 1
£ = 3 f M

1=r—1

forreN, andj =1, r+1, where & 1s the Kronecker delta
function, ie., 8; = 1 if i = j and §; = O otherwise. As
mentioned before, let A, and A, denote the distribution
function associated with operating phases 1 and 2,
respectively, m M™/G,-G,/1/n/(a, b) Systems. Moreover,
let 1/, and 1/, denote the expected values of the
distributions A, and A,, respectively. In addition, the
researchers let r(A)), jeN = {0, 1, 2.} denote the
probability that j customers arrive during a customer
service time with distribution A;. Then, by conditioning
on the number of batches arriving during a customer
service time with distribution A, the researchers have:

i
r(A)= Yt (A)  i=lor2 (2)
1=0

Where, o, (A) 1slth mixed-poisson probability
with arrival rate A and mixing distribution A,
(Kwiatkowska et al., 2002, Willmot, 1993):
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e My
1!

a(a) =" A(dt)

Tet Y IY(t) = Y1), Y,(t), t=0} denote the
(continuous time) state process in MG -G,/1/m/(a, b)
System where Y,(t) denoting the number of customers in
the system at time t and Y,(t) denoting the phase of the
system at time t and Y has state space:

E(n,a,h) — E(n,a,h)

w(0,1)]
With:

E®*» ={{c ):1<c <b-1}Uf(c.2):a+1<c <n}

and let (T )., denote the time sequence of customer

service completion epochs, i.e., T,, is the instant at which

the mth service completion takes place. In addition, let:
Y? ={V: = (Y2, Y, me N}

denote the post-customer departure state process in this

system where:
Y?, = Y(TH)

denoting the nmumber of customers that stay in the system
after the m-th service completion and:

Yy, = Yz(Tn:)

denoting the phase of the system after the mth service
completion.

POST-CUSTOMER DEPARTURE STATE IN
OSCILLATING SYSTEMS

In this study, it is presented that the derivation of the
limit distribution of the post-customer departure state in
type I and IT M®/G -G,/1/n/(a, b) Systems, i.e., the limit
distribution of Y.

Note that Y? is a DTMC whose transitions depend on
the number of customers that arrive to the system during
the successive customer service times. Thus to
characterize Y®, 1t 1s useful to first characterize the
probability that 1 customers arrive to the system during a
customer service iitiated in state ¢ which has been
denoted by r,™ for 1eN and ceE® * . The next result
shows how the probahilities r,™ may be computed in type
Tand IT M™/G,-G,/1/n/(a, b) Systems.

Lemma 1: In type | M®/G,-G,/1/n/(a, b) Systems the r; ;,*
probabilities are such that:
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(1 ])1 =1 (A ) (4

for (i, )eE™*" and 1eN where as defined before Eq. 2, 1
(A} 18 the probability that customers arrive during
customer service time with distribution A, In type 1L

M™/G-G,/1/n/(a, b) Systems, the r; ,* probabilities are
such that:

r(A) j=lend 0<1<b-1-i
i =1 (ALA) j=land b-i<1 3
5(A,) i=2

Where:

1
L (AB) =Y q,, (A, (B),1<ms]

u=t

for distribution functions A and B of non-negative
random variables with ¢, (A), 1<m<] denoting the
probability that during a customer service with
distribution A, m or more customer arrivals take place and
exactly u customers arrive until the first moment at which
m or more customer arrivals have occurred. Moreover:

m=lm=1

QLAY =AY N EVE @ (A)

s=0 v=s

(7
With:

o, =] O“t)j Adw)du dt (8)

denoting the sth mixed-poisson expected value with rate
A and mixing distribution A, satisfying:

1

_(17050("}_\))

A

®,(A)= ()

EAA) =T, (A) —%as (A) 21 (10)

where, ¢t (A) the sth mixed-poisson probability with rate
A and mixing distribution A is as defined in Eq. 3.

Proof: In a type I M¥/G,-G/1/m/a, b) System,
researchers get Fq. 4 by considering the number of
batches arriving during a customer service as described
in Eq. 2, since the customer service time distribution s A,
if the service starts with the system in phase 1 and 13 A,
if the service starts with the system in phase 2. Sumilarly,
the r, ;" probabilities in Eq. 5 for a type I M¥/G,-
G,/1/n/(a, b) System in follow by conditioming on the
number of batches arriving during a customer service that
starts with the system in phase 2 which has distribution
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A,. In the same way, the 1, ,” probabilities, l<b-i-1 in
Eq. 5 for a type II MM/G-G./1/m/(a, b) System follow by
conditiomng on the number of batches arriving during a
customer service that starts with 1 customers in the
system and the system being in phase 1 which has
distribution A, if fewer than b-1 customers arrive during
the service time.

The researchers now address the computation of
1 " probabilities, 1>b-i for type IT MM/G-G,/1/n/(a, b)
Systems.

These probabilities are associated to customer
services imtiated with the system in phase 1 such that the
system changes from phase 1-2 during the customer
service. For that let C; denote the event that during a
random time with distribution A,, independent of the
customer arrival process, m or more customer arrivals take
place and exactly 1 customers arrive until the first moment
at which m or more customer arrivals have occurred,
whose probability 1s q; (A;).

Moreover, let D, denote the event that during a
random time with distribution A, independent of the
customer arrival process and of the events (C,) ..., u
customer arrivals take place whose probability is 1, (A;).
Then for 1 <1<b-1 and lzb-1, we have:

() _
Lot =

.

P(Chﬂ,u M leu) =

1
1 u=h—

Qi (AL, (A =1, (ALA))

1

P(C,  P(D )

1

1
))
—h—
1
))
S

Thus to conclude the proof, it remains to show
Eq. 7, 9 and 10. Equation 7 follows since by
conditioning on the value of the product of the time it
takes to observe m or more customer arrivals by the
mndicator function of this time bemg smaller than an

independent random variable with distribution A, we
conclude that, for 1 <m<l:

m—1 m—1
“ s ALY :
A :f f E e “—E FOM dtA(du
qml( ) . (U:u) < S! e b 1-v ( )

23 e
s=0 v=s

Finally, Eq. 9 and 10 follow since from
(Kwiatkowska ef al., 2002). Theorem 2:
_ 1 &
as(A):KZ o, (A) (1D

j=s+l
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Researchers are now able to characterize the post-
customer departure state process Y*. We first note that Y?
15 a DTMC wath state space:

E(n,a,b) :]::(n,a,b) U {(031)}
With:

c,2)ya+
[(e.1):15¢ <b-2}u (¢, 2) ,a<b-1
Baab) _ l€¢ €n-1

{c,2)a+
¢, 1):1<¢, <b-1{u ,a=b-1
e dse, ! {1<cl<n—1

Moreover, a careful inspection leads to the following
result for the transition probability matrix of Y*.

Theorem 1: The (one step) transition probability matrix
P=(pyec,d, esE” of the DTMC Y* is such that for
c#(0, 1)

A ¢,=d,and ¢, —1<d, <b-2
If?d)l_cl+1 ¢, =d;, and max(b-1,¢, -1)<d, <n-2
0
Py =1Ly (e,d)=(a+12) (&1)
(b} _
Elzn—cl L d1 =n-1
0 otherwise
(12)
withr,"given in Lemma 1. Moreover:
dy +1 () _
_ 21:1 firg e, 100 d <b-1 (13)
Pow,.n = I o)
o Bt P T 4 =b-1=a
And:
0 atlsd <b-1
b1 e+
21=1 f;r((fl))dﬂﬂ + El=b ﬁr(g,bz))drm b-1= dl <n-1

(1)
=] Luni

Ponan = e
e gy

=l

(b)
* Egb fl E]g(nq)* rﬁlmﬁ)J
d=n-1

with x" = max (x, 0) and x A y = min (x, ¥).

Continuous time state in oscillating systems: In this
study, researchers characterize the limit distribution of the
continuous time state process for the type I and IT M™/G, -
G,/1/n/(a, b) Systems, 1.e., the limit distribution Y.

To start, let S(A) denotes a random variable whose
distribution 1s the distribution of the
customer service time, S with distribution function A

duration of a

given that | customers arrive to the system during this
customer service time and let Sj,l,lijil, denoting a



J. Econ. Theroy, 6 (1): 29-36, 2012

random variable with the same distribution as the
accumulated service time until the first epoch at which j or
more customer amrivals take place given that exactly |
customers arrive until the first moment at which j or more
arrivals have ocourred i a service period with distribution
function A,.

The following lemma shows how absolute moments
of the conditional random variables g¢a)s
computed.

k
¢ may be

Lemma 2: The absolute moment of order k, keN, of
conditional random variables s(a,) and 8% , verifies:

L (A)E[S (A)] = E(IHJ) Sy A (15)
for 1eN and;
¥ s ons 1 =ps @l -3 2 % Vo
1201 1=0 =0 1
(16)

Moreover:

4, (A B[S ] = xz Lhas _mk(Al)iffm)fH a7

s=m

Proof: Let G denotes the number of customer arrivals mn
duration of a customer service time. For keN, and 1eN:

HCAELS ()] =[5l |

= J.Dm u* iZefM LLS)J fPA(du)
j o ) AR Adwyr®
0 {k+ )

= i ( J' : le+j (A)f(J)

(k+j)'
25

Finally, Eq. 16 follows from Eq. 15 since :

3 (AL (A)] = B[S (A)] - 3 (AIELS! (A)]
1=0

Izn-1

taking into account that:

E[S" (A)] = T (AJELS (A)]

120

Researchers now address the computation of E[é}‘l]
which goes as follows:

33

= P (.01} S —
QAR = [ o B CRL P £ K

= k)’
2 e
ZJ ! f(m)f

—A (}\‘u)m+k
(m+k)!

A (u)du

which leads to Eq. 17 in view of Eq. 2. We using the
above lemma to address the lumit distribution Y. We first
note that the state process Y 15 a MRGP with state
space B™ *¥ associated with the time sequence (T,),.... of
post-customer departure epochs, therefore using Kulkarni
{(1995) (Theorem 3), we conclude that the limit probability
vector of Y, p = (py:™*" given by the following function
of the limit post-customer departure state probability
vector:

n=(m)

ceElmat)

_ Do T

Py =
Ecefg(n,a,bl Tl:c(p:

deE® 28!

Where, @, denotes the mean time elapsed between
two consecutive service completions conditioned on the
state of the system after the first of these service
completions being ¢, 1.e.:

(18)

@, = E[T,,, ~T,[Y(T,") =c]

For:
ce FoaD

¢, denotes the expected sojourn time of Y in state d
in-between two consecutive service completions
conditioned on the state of the system after the first of
these service completions being c, 1.e.:

Tk+1
Oy :EUH rrea At Y (T )—c}

for;
ce Eme? ge Eeb)

A careful analysis leads to the following result on the
computation of the mean time elapsed between two
consecutive service completions conditioned on the state
of the system after the first of these service completions
being ¢, @..

Theorem 2: In type I M™/G,-G,/1/m/(a, b) Systems:



J. Econ. Theroy, 6 (1): 29-36, 2012

l+i c=(01) and b=1
AW,
1 1
—+— c=(0,) and b>1
¢, = 7; H: (19)
— c,=landg >0
Hy
1
— c,=2
M,

and in type II M™/G,-G,/1/nfa, b) Systems:

1
— C

M,
1

W, 21>h clrl(Al)Jr
Zb o= ZI-H

2 TR0 )

s

_+21 lf(pon

=2

(Al)fl(rl)
Q. =

c,=landc #0

mzh—gy—u M

c=(0,1)

1zhf1
2
(20)
Proof: We first note that Eq. 19 for type I oscillating
systems follows similarly to the case of regular systems
taking into account that the duration of a service
initiated with the system in phase i has expected value
Vp,1=1,2
Suppose now that the oscillating system 1s of type IL.
The first branch of Eq. 20 follows from the fact that a
service time mitiated with the system in phase 2 has
distribution function A, with mean 1/p;. In addition if
¢ = (¢;, 1), ¢;»0 then @, 1s the mean duration of a service
time initiated with the system in state ¢, for which
conditioning on the number of customers that arrive to
the system during the first service time, we obtain:

0, = Y ADES (A
212}3,:1 qb—cl,l (Al )(E[gbcl,l] + Mi}

(21)

Now, taking into account Lemma 2, we have:

MBS (1= 5 3G+ Doy (A0

bocy -1 xl+l 1 .
SO WSRO
(22)
Similarly, taking into account Eq. 17, in Lemma 2 and
Eq. 11, we have:

DI
1=0
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(A JE[S

Zb :1 Es>la5(A1
Zb o= f(l 1)f
u=l-1 v

qh—cl,m

b—gy, m -

for m=>b-¢, so that:

Zmébfcl qbfcl,m(Al)E[gbfcl md ™

2" YL 0(A)
Eﬁk@ S
(23)

Now, the validation of the second branch of Eq. 20
follows from Eq. 21, by taking into account Eq. 22 and 23
and the fact that:

Elzb—:l G-, (Al )= Elzb—cl 4 (Al )

Finally, the third branch of Eq. 20 follows from the
facts already established by conditionming on the size of
the first batch ammving after a service completion that
leaves the system empty, taking into account that the
mean waiting time for this batch to arrive to the system is
equal to 1/A. By conditioning on the number of customer
arrivals m the first service that takes place after a service
completion that leaves the system in state ¢, we conclude
the following result.

Theorem 3: In M™/G,-G,/1/n/(a, b) Systems, ¢, = 0 if
d,<c,. In type T and IT Systems:
T (Ay) <d, =n- 24
[0} = _ 24
(c1.2d,,2) Zlgm T(A,) d, =

In turn, in type T systems:

Ty (A (d, ¢ andd, =T1)
orib=d <nandd, =2) (25)
P00 =10 d <bandd, =2

Y. TA) d=n

and in type IT:
T (A) d >c andd, =1
0 d, <bandd,=2
Yo @A) b<d <nandd, =2

e, = | 5, a(AL)
212b—cl qb—:,,l(Al)
(Az) d1 =1n

+ —
ij(n— -1} Ii

(26)
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if ¢,>0. Moreover:

1k d =0
4
1:1f1 (A)q)(l,nd d, »>0and d, =1
0 d,<b and d, =2
h-1
q)(0,1)01 = 1=1 flq)(u)a + b=d <n

d,
Zlib flq)(l,z)d

b-1
21:1 P62 d =n
212}3 f1¢'(1m,2)(n,2)

27
mn type [ and IT Systems.

Algorithmic analysis: Researchers summarize the above
results as a procedure to calculate the limit distributions
of the post-customer departure state and the contmuous
time state in type I and IT M™/G,-G./1/n/(a, b) Systems as
Fig. 1. This algorithm requires as input the mixed-poisson
prebabilities (¢ (A, and (e (As)a,, along with
the batch size probabilities (f)..... The algorithm
consists of eleven steps, with the first six steps mcluding

Algorithm
Input: N, A, B, &, 1y, P, ()1 aenzs (08 (ArD,s 04 (Ao )0 dena)
[Step 1] Compute (f¥)y ... using Eq. 1

[Step 2] Compute (TAD T (A)) using Eq. 9 and 10

D<len-2

[Step 3] Compute (Qu( A cusb1, manz USING Eq. 7 if the system is

of type Il

[Step 4] Compute (1r; (A1), 11 (Az)naianz using Eq. 2

[Step 5] Compute (1?(:13131)1&,55_”4,““_2 using Eq.5 if the system is of
typell

[Step 6] Compute (E(A1 )’E(AE)) using

Oslsn-2
RA)= X848

[Step 7] Compute p = (pu) using Eq. 12-14

L

[Step 8] Compute m such that wP and w1 =1
[Step 9] Compute (9 Domenm using Fq. 19 if the system of type T

and using Eq. 20 if the system is of type I
[Step 10] Compute (¢'c 4 )ﬁgmm_ﬂ(mm using Eq. 24-27

tep ormpute = using Eq.
Step 11] C p=,) ing Eq. 18

epmat)

Output: n=(n) .., and p=qp)

£ pinad]

Fig. 1: Algonthm to compute the limit distributions of the
post-customer departure state and the continuous
time state in type I and II M™/G-G,/1/m/(a, b)
System
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the computation of auxiliary quantities that are used in
steps 7-11. The computation of the limit probability vector
of the post-customer departure state ™ = (7,) 15 done in
step 8 where 1 denotes a vector of ones.

The computation of the limit probability vector of the
continuous time state p (p.) is done in step 11 and
requires the quantities computed 1n steps 8-10. We note
that in considered the oscillating systems, the lower and
upper barriers (respectively, a and b) are smaller or equal
ton.

NUMERICAL RESULTS

As shown in Table 1, the values limit probability
vectors of the number of customers at post-customer
departures epochs and in continuous time in type T and IT
ME=D(2)-D(5/4)/1/20/(7, 11) Systems with customer
batch arrival rate A = 1/4, with D(a) denoting the
determimstic distribution with value a and Geo(1/4) the
geometric distribution with parameter 1/4.

The result in Tablel show that the limit probability
vectors of the number of customer at post-customer
departure and in continuous time are similar for the
compared type I and IT M /D(2)-D(5/4)/1/20/(7, 11)
systems.

Table 1: Limit probability vectors of the munber of customers at post-
customer departures epochs and in continuous time in type I and
I MEHD(2)-D(5/4)/1/20/(7, 11) Systems with batch arrival

rate A= 1/4
Typel Type Il

K T P Ty P

0 4.6378x10° 1.3358x10? 4.5711=10° 1.3185%10%
1 6.4870x10° 8.6658x10° 6.3937x107 8.5534x10-
2 8.8699x10° 1x1534x102 8.7423%10° 1x1385x10°
3 1x1978x102 1.5338x102 1x1805x10° 1.5140=107
4 1.6061x102 2.0386x10? 1.5830%102 2.0122x10?
5 2x1450x107 2.7087x10? 2x1142x10° 2. 6736x107
[ 2.8581x107 3.5984x107 2.8170x107 3.5518x107
7 3.8031x107 4.7799x10? 3.7484x107 4.7179x10%
8 4.3690x102 4.3685x102 4.3062%102 4.3119x107
9 4.8890x102 4.6437x102 4.8187=102 4.5835%107
10 5.3317=107? 4.7955x102 5.2550%1072 4. 7334102
11 5.7881x10? 5.2511x=107? 5.7504%1072 5.2182x107
12 6.2644%107? 5.6159x107? 6.2572x10° 5.6086x107?
13 6.7651x107? 6.0126%107? 6.7823x10° 6.0267x10?
14 7.2945%10? 6.4426x10? 7.3315%10° 6.4748x10?
15 7.8565%10? 6.9074x10? 7.9100=10° 6.9554x10?
16 8.4549x10? 7.4090x10? 8.5226x10° 7.4710x10?
17 9.0936x10? 7.9496x10? 9x1739%107 8.0243x10?
18 97764107 85317107 9.8683x107 8.6182x107
19 1.050710" 9x1580x107 1.0610x101 9.2559x107
20 - 4.8992x102 - 4.9365%107
Mean 13.1145 12.8558 13.1568 12.9020

SD 4.57138 5.0917 4.5603 5.0822
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