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Abstract

This study developed and validated an optimized Artificial Neural
Network (ANN) model for early fault detection and localization in 330 kV
power transformers across Nigeria’s transmission system using a
simulation-based, machine learning approach. Fault types-including
line-to-ground, line-to-line and highimpedance-were simulated with IEEE
9-bus and 39-bus test systems via MATLAB/Simulink for substations such
as Egbin, Gombe, Owerri and Jos. Diagnostic features like peak voltage,
rise time, crest factor and total harmonic distortion were extracted at
100,000 samples per second and used for ANN training. A genetic
algorithm (GA) optimized the ANN, improving classification accuracy and
prediction performance. The model reached nearly 100% accuracy after
5000 epochs, showing strong alignment between predicted and actual
fault values. Findings showed variations in model accuracy with
transformer ratings, temperature and cooling methods, peaking at 300
MVA and 28°C under OFAF cooling. Vector field plots introduced in the
study provided novel insights into F1-score transitions, clearly mapping
performance shifts-an approach not present in previous research. The
study concluded that integrating GA-optimized ANN models enables
highly accurate, real-time fault detection and localization across Nigeria’s
power grid. It also demonstrated that transformer-specific variables and
environmental conditions significantly influence diagnostic precision,
which is critical for efficient grid management. Based on these findings,
it was recommended that Nigerian grid operators invest in ANN-based
diagnostic systems integrated with SCADA for real-time fault monitoring.
Additionally, transformer upgrades should consider optimal rating-
cooling-temperature combinations to maximize diagnostic efficiency,
while power system engineers should incorporate machine learning
optimization into predictive maintenance strategies.
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INTRODUCTION

In Nigeria’s power transmission infrastructure, 330
kilovolt (kV) transformers-primarily the 330/132
kilovolt (kV) variants-are fundamental to bulk power
transfer across regions. These transformers, often
oil-immersed, three-phase and equipped with On-Load
Tap Changers (OLTC), are installed in major substations
such as Alaoji, Afam, Okpai and Gwagwalada, stepping
down high transmission voltages to levels suitable for
sub-transmission and distribution. However, these
critical components are not immune to faults. When a
fault-particularly a high impedance fault-occurs, it can
lead to severe equipment damage, voltage instability,
and widespread outages, with serious consequences
for power delivery and reliability!™. Conventional fault
detection systems frequently act too late, often after
damage has already occurred. Transient signals, the
brief electrical disturbances produced during faults,
offer a promising alternative. These signals, though
short-lived and complex, contain valuable diagnostic
information. Artificial Neural Networks (ANNs), with
their ability to model nonlinear relationships and
recognize subtle patterns in data, have been shown to
effectively interpret transient signal features to detect
and classify faults™?. Yet, un optimized ANNs can still
fall short. Optimization techniques-such as Genetic
Algorithms or Particle Swarm Optimization-enhance
ANN performance, improving accuracy, adaptability
and fault localization capabilities, even under the noisy
and variable conditions typical of high-voltage
environments™®!. Optimized Artificial Neural Network
models trained on transient signal features bring a
major advantage to power system protection-early
fault detection and accurate localization. This is
especially critical in Nigeria, where transformers differ
in size, cooling method, manufacturer and operational
age, ranging from 150 megavolt-ampere (MVA)
units to high-capacity 450 megavolt-ampere (MVA)
installations. Such diversity demands intelligent,
flexible fault diagnosis systems that can adapt to
varying conditions®®”. When integrated into digital
protection systems such as Supervisory Control and
Data Acquisition (SCADA) platforms, these optimized
ANN models allow for real-time monitoring, fast
anomaly detection and guided maintenance responses-
minimizing unplanned outages and extending
transformer lifespan®®. This paper proposes a
transient signal analysis-based optimized artificial
neural network model tailored to the Nigerian 330
kilovolt (kV) transmission system. It addresses the
pressing need for intelligent, scalable and location-
sensitive fault diagnosis, aiming to support the
reliability, resilience and operational efficiency of
Nigeria’s power network.

challenges due to frequent faults in 330 kV power
transformers. These transformers are frequently
exposed to thermal stress, overloading and insulation
breakdowns, resulting in extended outages and costly
system disruptions. Existing fault detection approaches
remain largely reactive and are insufficient for
identifying complex transient disturbances in a high-
voltage environment. A critical gap in current research
is the lack of attention to the operational diversity of
330 kV transformers in Nigeria, particularly the wide
variationsin power ratings-ranging from 150-450 MVA-
as well as their differing cooling methods and
operational conditions. These factors significantly
influence how faults emerge and progress, yet most
ANN models fail to account for such transformer-
specific variables, instead applying uniform diagnostic
frameworks. Furthermore, many of these models are
not optimized for real-time deployment or integrated
into advanced protection infrastructures such as
SCADA systems. This lack of precision and adaptability
limits their effectiveness in real-world conditions. To
address these challenges, this study proposes a
transient signal analysis-based optimized ANN model,
specifically designed to accommodate the variationsin
transformer ratings, cooling methods and operational
behaviour.

Aims and Objectives of the Study: This study was
aimed at optimizing ANN for early detection and
localization of faults in 330kV power transformers in
Nigeria using transient signal analysis. Specifically, the
objectives were to:

e Develop an optimized ANN model for early fault
detection and localization in 330kV power
transformers in Nigeria's transmission system
using transient signal analysis.

e Evaluate impact of variations in the power
transformer ratings, cooling methods and
operational conditions on the performance of the
optimized ANN model integrated with SCADA
systems for fault detection and localization.

Research Questions:

e How can ANN be optimized for early fault
detection and localization in 330 kV power
transformers in Nigeria's transmission system
using transient signal analysis?

e What impact do variations in the power
transformer ratings, cooling methods and
operational conditions have on the performance
of the optimized ANN model integrated with
SCADA systems for fault detection and
localization?

Power transformers are integral to the efficient

functioning of electrical power transmission systems.

Statement of the Problem: Nigeria’s power As such, ensuring their reliability through effective
transmission network faces persistent reliability fault detection and localization is crucial. The
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application of evolutionary optimization techniques,
particularly in Artificial Neural Networks (ANN), has
shown considerable promise in overcoming the
limitations of conventional methods"**?. Underscored
the improved fault detection capabilities of ANN in the
330kV transmission system, aligning with the findings
of® who affirmed the potential of ANN in enhancing
fault detection accuracy across various power
transmission systems. In tandem with these insights!”’
demonstrated how deep learning techniques further
refine fault localization, ensuring a more precise
diagnosis of transformer issues. Furthermore, the
application of metaheuristic algorithms like Genetic
Algorithm (GA) and Particle Swarm Optimization (PSO)
in optimizing ANN models has gained traction, with
researchers like® noting their effectiveness in
enhancing model performance*". Emphasized the role
of machine learning models in improving grid
reliability, particularly in fault detection. In tandem
with these advancements, the design and
configuration of substations such as the Ajao Estate
Substation and Shiroro Power Station have been
identified as pivotal to enhancing the overall resilience
of power grids. Sam™ also underscored the importance
of integrating ANN in short circuit fault classification,
complementing broader efforts in system protection.
The integration of ANN with real-time monitoring
tools, such as the SCADA systems, has also been shown
to enhance fault management in power grids™.
Salihu® as well as Adabayo and Ajala’®. Highlighted the
practical application of ANN in the effective functioning
of power system networks in Onitsha and Port
Harcourt, noting the model’s adaptability to varying
operational conditions. Yadava' supported this notion,
advocating for the synergy between ANN and Adaptive
Neuro-Fuzzy Inference Systems (ANFIS) to achieve
more dynamic and accurate fault detection strategies.
Moreover, Olabisi and Ayeni™ pointed to the
significance of voltage quality in maintaining efficient
power transmission, while Braide™ further analyzed
the effects of harmonic distortion on Nigeria’s 330kV
network, which is relevant for optimizing transformer
performance. Theincorporation of real-time data from
transmission substations like Gwagwalada Substation
and Kainji Power Station has provided additional
insights into power quality, further reinforcing the
value of ANN in modernizing fault detection and
mitigation systems. The reliability of these models,
however, is contingent upon several factors, such as
transformer ratings and system conditions, which Gao
and Wang® recognized as pivotal elements in fault
diagnosis optimization. The ongoing evolution of
power system analysis has seen the inclusion of
complex transient fault scenarios (Hedman, 2017) and
the consideration of transformer parameters-ratings of
150 MVA, 300 MVA and 450 MVA-into optimization

models. Furthermore, Emeka and Augstin™

highlighted the importance of substation design, such
asthe 330-132-33KV 150MVA substation, in supporting
effective power transmission. Additionally, the use of
Jacobian matrices and optimization techniques, like the
primal-dual interior-point technique explored by
Obinwa™!, has led to advancements in optimizing
transmission systems, including the Nigerian 330kV
grid. Moreover, Ulasi™ contributed valuable fault
occurrence data, while Onojo™” analyzed power flow
within the system, reinforcing the significance of
optimization techniques in enhancing transmission
network efficiency.

Theoretical Framework: Horowitz and Phadke (1993)
introduced a well-detailed theory on power system
protection, emphasizing relaying as a fundamental
mechanism for detecting, classifying and isolating
faults in high-voltage transmission networks. Their
framework underscored the necessity of intelligent
systems that can respond rapidly and selectively to
ensure grid stability and minimize outage durations™.
This study develops an evolutionary power system
optimization mechanism using transient signal analysis
and a multilayer feed for ward ANN for early fault
detection in Nigeria’s 330 kV power transformers. By
simulating various fault scenarios-line-to-ground and
line-to-line, along with transformer ratings (150, 300,
450 MVA) and cooling methods™. ONAN, OFAF,
OFWF)-the mechanism emphasizes time-sensitive,
data-driven protection responses, enabling swift
differentiation between fault scenarios and ensuring
rapid reactions to protect the integrity of national
transmission networks.

MATERIALS AND METHODS

The materials and methods employed in this study
combined simulation modeling, signal processing and
machine learning to develop an intelligent fault
detection system for 330kV power transformers in
Nigeria. This involved the generation of synthetic
transient fault data, feature extraction, ANN training
and performance optimization through metaheuristic
algorithms.

Data Generation and Feature Extraction: This study
employed a simulation-based, optimization-enhanced
machine learning methodology to develop and validate
an ANN model for fault detection and localization in
330kV  power transformers across Nigeria’s
transmission system. Fault scenarios-covering line-to-
ground, line-to-line and high impedance disturbances-
were simulated using MATLAB and Simulink configured
with Institute of Electrical and Electronics Engineers
(IEEE) 9-bus and 39-bus test systems, tailored to
represent substations such as Egbin GS, Gombe TS,
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Table 1: Extracted Diagnostic Features for ANN Model Training and Testing

Parameters Line-to-Ground Line-to-Line 3-phase Balanced L-L-G (Double-Gnd)

Substation Egbin GS Gombe TS Owerri TS Jos TS

Test System IEEE 9-bus IEEE 9-bus IEEE 39-bus IEEE 39-bus

Peak Voltage (kV) 343 351.45 342 345

Rise Time (ms) 363 3100 2900 3400

Exciter Current (pu) 2.98 2.85 3.00 2.95

Exciter Voltage (pu) 2.16 2.10 2.25 2.20

Fault Duration (ms) 1720 1800 1750 1850

NTB Features Yes Yes Yes Yes

Crest Factor 1.36 1.42 1.37 1.35

THD (%) 7.4 6.9 7.2 7.9

Notes/Source Braide (2022). Braide (2022). Abdulkareem (2021), Estimated from
Ulasi (2015), Ulasi (2015), Onojo (2013), Makanju (2024), Onojo (2013) all sources

Abdulkareem (2021)

Makanju (2024)

Braide (2022).

GS=Generating Station, TS=Transmission Substation

Owerri TS and Jos TS. Transient signals were recorded
at a sampling rate of 100,000 samples per second.
Diagnostic features extracted from these signals
included peak voltage, rise time, crest factor and total
harmonic distortion. These features formed the
numerical data set used to train and test the ANN
model as shown in (Table 1).

Network Architecture and Optimization Parameters:
The ANN comprised an input layer with 8 neurons, two
hidden layers containing 14 and 9 neurons respectively
and a final output layer representing fault classes. The
network was trained using the Levenberg-Marquardt
backpropagation algorithm, which minimizes the Mean
Squared Error (MSE) defined as:

MSE=13 (Y, - yiy
nig

Where

e yi=True fault class.

e yi=Predicted output.

To improve learning efficiency, the weights w and
biases b of the ANN were optimized using two
metaheuristic algorithms: Genetic Algorithm (GA) and
Particle Swarm Optimization (PSO). For GA,
chromosomes represented concatenated weights and
biases. The fitness function for GA was also the Mean
Squared Error, with selection using roulette-wheel
probability.

fi
N
=

P
i

Where

e fi=Fitness of chromosome.

e iand N=Population size.

In PSO, each particle updated its position based on its
personal best and the global best using:

1hﬁ+D=WWOHdﬂ®FM®HdQ@m0D

Xi(t+1)=xi(t)+ui(t +1)

Where

e vi=Velocity of particle.

e i, Xi = Position.

e pi=Particle’s best-known position.

e g=Global best.

e w=Inertia weight.

e rl, r2=Random values in [0,1].

The Levenberg-Marquardt update rule used during
training combined gradient descent and Gauss-Newton
methods:

W =w—(JTJan) ~ HTe

Where

e J=Jacobian matrix,

e A=Damping factor,

e e=Error vector.

Transformer parameters-ratings of 150 MVA, 300 MVA
and 450 MVA, cooling methods including ONAN,OFAF,
and OFWF and operating temperatures of 28 degrees
Celsius, 34 degrees Celsius and 42 degrees Celsius-
were embedded as auxiliary inputs, increasing the
model’s contextual sensitivity.

Step-by-Step Application of the Proposed ANN Model:

e Simulate transient fault scenarios-such as line-to-
round, line-to-line and high impedance faults-
using MATLAB and Simulink environments,
configured with IEEE 9-bus and 39-bus test
systems adapted to the given Nigerian 330 kilovolt
(kV) substations.

e Transientvoltage and currentsignals are captured
during each simulated fault event at a sampling
rate of 100,000 samples per second, ensuring
detailed temporal resolution suitable for deep
diagnostic analysis by capturing critical waveform
patterns during fault initiation and propagation.

e From each recorded transient signal, vital
features-ncluding peak voltage, rise time, crest
factor and THD-re extracted. These features
reflect the signal behavior during faults and serve
as inputs for the ANN.

| ISSN: 1818-7803 | Volume 20 | Number 1 | 12

| 2025 |



J. Eng. Appl. Sci., 20 (1): 9-17, 2025

e The extracted numerical features are normalized
and compiled into a structured dataset that
distinguishes between fault types and locations,
forming the basis for supervised learning in ANN
development.

e A multilayer feed orward ANN is developed,
comprising 8 input neurons, two hidden layers
(with 14 and 9 neurons respectively) and an
output layer that maps to specific fault
classifications.

e Train the ANN using the Levenberg-Marquardt
back propagation algorithm which combines the
benefits of gradient descent and the
Gauss-Newton method to minimize the MSE
between predicted and actual fault types.

e Optimize the ANN using Genetic Algorithm and
Particle Swarm Optimization to refine weights and
biases, ensuring faster convergence and improved
generalization.

e Transformer operational conditions-ratings (150,
300, 450 MVA), cooling types (ONAN, OFAF,
OFWF) and temperatures (28°C, 34°C, 42°C)-are
embedded as auxiliary input features, allowing the
ANN to adapt to context-specific variations.

e Evaluate the optimized ANN with variations in
transformer configurations. Each test scenario is
designed to evaluate the performance of the ANN
under different power ratings and cooling
methods, ensuring its adaptability and robustness
across various operating conditions:

e  First, test with a transformer rated at 150 MVA
and cooled by ONAN.

e Second, test with a transformer rated at 300 MVA
and cooled by OFAF.

e Third, test with a transformer rated at 450 MVA
and cooled by OFWF.

e  Fourth, test with a transformer rated at 150 MVA
and cooled by OFAF.

e  Fifth, test with a transformer rated at 300 MVA
and cooled by ONAN.

e Sixth, test with a transformer rated at 450 MVA
and cooled by ONAN.

e Deploy the final ANN model into a SCADA
simulation environment and evaluate it across
multiple fault scenarios, measuring detection
accuracy (95 percent), localization error (+14
meters), model latency (73 milliseconds), precision
(0.91), recall (0.94) and F1-score (0.925) under
each transformer configuration.

RESULTS AND DISCUSSIONS

Answers to Research Questions:

Research Question 1: How can ANN be optimized for
early fault detection and localization in 330kV power
transformers in Nigeria's transmission system using
transient signal analysis?

ANN Training Performance for Transformer Fault Classification

o 1000 7000 3000

Epochs

4000

Fig. 1: A Plot Showing ANN Training Performance for
Transformer Fault Classification
Source: Matlab Simulation Output

Datain (Fig. 1) illustrate the training performance of an
artificial neural network (ANN) used for fault
classification in 330 kV transformers. The training MSE
(blue line) steadily decreases as the model learns,
achieving near zero values by the 5000th epoch.
Meanwhile, the test accuracy (red line) increases
sharply, eventually stabilizing close to 100%,
demonstrating the model's effective learning and high
fault classification performance after the 5000 epochs.
This confirms that the ANN can successfully classify
fault types using transient fault signal features like
peak voltage, rise time, crest factor and THD, meeting
the goal of accurate fault detection in Nigeria’s
transmission system.

Genetic Algorithm Fitness Ewolution
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Fig. 2: A Plot Showing Genetic Algorithm Fitness
Evolution
Source: Matlab Simulation Output

Data in (Fig. 2) reveal that by having fitness scores
simulated over 500 generations for the genetic
algorithm (GA) optimization process, the GA can
leverage on fitness improvement to achieve better
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model performance. The fitness score starts from a
value close to 0.9 and decreases gradually, reaching
around 0.2 by the 500th generation. This shows that
the GA is effectively refining the network’s weights,
resulting in enhanced fault detection accuracy.

Actual vs Predicted Output
ST THECER @EEEO - -
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Fig. 3: A Plot Actual vs. Predicted Output of the
Optimized ANN Model Training and Testing
Source: Matlab Simulation Output

Data in (Fig. 3) reveal that by having actual and
predicted binary output values simulated over 100
samples for both the true and predicted values, the
ANN can leverage on its prediction capacity to achieve
accurate fault localization. The scatter plot
demonstrates that actual and predicted values align
closely, with values like 0 (off) and 1 (on) for both
actual and predicted outputs. While there is some
variance between actual and predicted values, the
model is able to predict with reasonable accuracy,
supporting the capability of ANN in transformer fault
diagnosis.

Research Question 2: Whatimpact do variationsin the
power transformer ratings, cooling methods and
operational conditions have on the performance of the
optimized ANN model integrated with SCADA systems
for fault detection and localization?

Detection Accuracy vs Transformer Rating and Temperature

Accuracy (%)
© ©
© o © 4 ©
o (5] [} (52 ~

©
A D
o

25 100

Temperature (°C) Transformer Rating (MVA)

4: A 3D Surface Plot Showing the Optimized ANN
Detection Accuracy vs. Transformer Rating and
Temperature
Source: Matlab Simulation Output

Fig.

Data in (Fig. 4) show a peak detection accuracy of
around 95.3% at 300 MVA and 28 °C, while the lowest
accuracy of 94.8% occurs at 450 MVA with 42 °C.
Unlike (Fig. 5A), which showed a smooth variation
across ratings, this surface plot emphasizes how
temperature interacts with transformer rating,
suggesting that the model is most accurate under
moderate temperature conditions and optimal
transformer ratings.

Detection Accuracy vs Cooling Method
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Fig. 5: A Plot Showing the Optimized ANN Detection
Accuracy vs. Cooling Method
Source: Matlab Simulation Output

Data in (Fig. 5) reveal a steady increase in detection
accuracy as cooling methods shift from ONAN to OFAF,
reaching a peak of 95.5% under OFAF cooling at 300
MVA. The contrast with Fig. 5A is clear: While the
surface plot highlighted temperature and rating
interplay, this line plot isolates the cooling method as
a significant factor in performance, with OFAF cooling
leading to the highest detection accuracy, making it a
critical parameter for optimization.

F1-Score Across 330 kV Transformer Configurations (Area)
0.94

F1-Score

0.9

Transformer Configurations

Fig. 6: Area Plot Showing F1-Score Progression Across
Different Transformer Configurations
Source: Matlab Simulation Output

Datain (Fig. 6) indicate the F1-score progression across
different transformer configurations. The F1-score
fluctuates between 0.915 and 0.935, with the highest
value (0.935) observed for the 300 MVA transformer
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using ONAN cooling, indicating the optimal setup. The
lowest score (0.915) occurs at 450 MVA with OFWF
cooling, revealing a slight performance dip. This
qguantifies the overall Fl-score variability across
different transformer ratings and cooling methods.

Contour of F1-Score by Rating & Substation

Jos —0.934

+0.932
-10.93
Owerri j 0-928

+0.926

0.924

Substation

0.922
Gombe

0.92

0.918

0.916

Egbin . . . . .
150 200 250 300 350 400 450

Transformer Rating (MVA)

Fig. 7: A Contour Plot Showing F1 Scores by Rating and
Substation
Source: Matlab Simulation Output

Data in (Fig. 7) reveal that the contour lines create
“bands” of equal Fl-score across ratings and
substations, making it easy to spot plateaus and sharp
transitions. For instance, the 0.93 contour encloses
both Egbin (150 MVA) and Gombe (300 MVA), showing
they deliver similarly high F1 performance. Conversely,
the tight spacing of the 0.915-0.925 contours at Owerri
(450 MVA) signals a rapid drop in effectiveness there.
This discrete banding contrasts with Figure 5A’s
smooth surface by clearly delineating performance
thresholds, helping pinpoint exact rating-substation
combinations that cross key F1-score milestones.

Quiver: F1-Score Change Across Ratings per Substation

Jos \ \
c Oweri \ \
S \
T
— Gombe
-
@ Egbin

150 200 250 300 350 400 450

Transformer Rating (MVA)

Fig. 8! Quiver Plot Showing Vector Field'
Source: Matlab Simulation Output

Data in (Fig. 8) highlight directional shifts in F1-score
that neither surface gradients nor contour bands make

obvious. A long arrow from 150~300 MVA at Gombe
points to a robust +0.01 gain, while a shorter,
downward arrow at Jos from 300-450 MVA reveals a
sharp -0.015 drop. This clear vector field isolates
exactly where and how quickly performance changes,
offering actionable insight into transformer rating
impacts.

3D Surface: Accuracy over Rating & Temperature
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Fig. 9: 3D Surface Plot Showing Accuracy Over Rating
and Temperature
Source: Matlab Simulation Output

Data in (Fig. 9) show that the surface peaks at 95.3%
accuracy for 300 MVA at 28 °C, dips to 94.8% at 450
MVA and 42 °Cand shows 95.1% for 150 MVA at 34 °C.
This quantifies the model’s optimal and worst
performance under specific rating-temperature
combos.

Pcolor: Accuracy Heatmap
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Fig. 10: Pcolor Plot Showing Accuracy Heat Map
Source: Matlab Simulation Output

Data in (Fig. 10) highlight zones above 95.2% (red) at
300 MVA, 28 °C, mid-range at 95.0% (yellow) for 150
MVA, 34 °C and cooler 94.8% (green) for 450 MVA, 42
°C. These discrete values pinpoint areas demanding
calibration.
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Quiver: Gradient of Accuracy in Rating-Temp Space
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Fig. 11: Quiver Plot SHOWING Accuracy in Variables
Source: Matlab Simulation Output

Datain (Fig. 11) indicate arrows that show a +0.3% gain
from 150-300 MVA at 28 °C, a -0.4% drop from
300450 MVA at 42 °Cand a +0.2% rise from 150-300
MVA at 34°C. This vector field maps sensitivity of
accuracy to rating and temperature changes.

The simulation-based, optimization-enhanced machine
learning methodology applied in this study
demonstrates a significant advancement in
transformer fault diagnostics compared to prior
models. Odion and Ekpa'” similarly implemented ANN
for high impedance fault localization within Nigeria’s
330kV network, achieving notable accuracy, yet their
model lacked integration with genetic algorithms for
weight optimization. Umuroh™™® supported ANN’s
effectivenessin transient signal-based classification but
did not explore rise time or crest factor as diagnostic
inputs, both of which are central to this study’s
enhanced feature set. By achieving near-zero training
MSE and test accuracy nearing 100% by the 5000™
epoch, the present study confirms the ANN'’s reliable
learning trajectory. This contrasts with Sam™, whose
model plateaued prematurely due to limited feature
variation. What this study uniquely uncovers-unlike
previous work-is the interplay between transformer
rating, temperature and ANN classification accuracy,
showing a peak of 95.3% at 300 MVA and 28°C, which
no prior study quantified in such resolution or
granularity. Abbott'® and Abasi-obot” confirmed the
use of ANN and Convolutional Neural Network (CNN)
respectively, yet their models did not map detection
accuracy against specific transformer configurations
and environmental variables as done here. Moreover,
the finding that detection accuracy improves with
OFAF cooling, peaking at 95.5%, surpasses the depth of
analysis seen in Salihu®, who identified only general
cooling impacts without quantifying them. The area
and contour plots presented here reveal that Egbinand
Gombe substations, at specific ratings, deliver optimal
F1-scores-insight absent in the power flow studies of
Onojo™” and voltage stability work by Egbo™*?". What
distinguishes this study is the introduction of a
directional vector field through a quiver plot, which not
only maps Fl-score transitions across transformer
configurations but also quantifies directional shifts, a

novel contribution not observed in prior models such
as those by Yadava'” or Olabisi and Ayeni™. While prior
research established ANN’s effectiveness, none
provided this level of spatial and operational sensitivity
analysis across Nigeria’s substations, nor integrated
these findings into a single ANN framework with
optimization layers that adapt to operational
thresholds.

CONCLUSION AND RECOMMENDATIONS

This study conclusively demonstrates the efficacy of an
optimization-enhanced ANN model in accurately
detecting and localizing faults in Nigeria's 330 kV
transformers, leveraging transient signal features and
vector field analysis for enhanced insights. With high
classification accuracy achieved under optimal
conditions, particularly with OFAF cooling and
mid-range transformer capacities, utilities are advised
to prioritize these parameters and maintain
temperatures below 30°C. A strong case is made for
integrating the GA-optimized ANN into SCADA systems,
with substations like Gombe and Egbin serving as
benchmarks. Future designs should embed
temperature-aware algorithms, fostering a new
generation of adaptive diagnostic tools. Continuous
real-time data training will refine diagnostic precision,
paving the way for more reliable power transmission
and distribution in Nigeria.
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