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Abstract: This article presents an L1 Adaptive Control
technique to solve the wing rock stabilization problem
which is described as a second order nonlinear system.
The wing rock phenomenon is characterized by the
appearance of a limit cycle in flight dynamics, caused by
flow asymmetries that build nonlinear aerodynamic roll
damping. The problem has been treated in the literature
using L1 Adaptive technique, but several questions arise,
especially in the way the prefilter is chosen such that the
resulting augmented system is in fact L1 and guarantees
closed loop stability under actuator and model
dynamicsuncertainties. It is found in this article that L1
first order filters used in the simulations reproduce results
of referenced authors but higher order L1 filters used,
generate unstable response, even though the calculation of
named L1 Norm Condition, considered in L1 adaptive
control theory as necessary and sufficient condition is met
which is an exception to the theory. It is shown also that
the choice of a proper third order filter instead of an
strictly proper render steady state response with stationary
error. Two schemes for the same wing rock system
dynamics are treated, reproducing results of referenced
authors in this article but higher strictly proper L1 filters
used, generate unstable response not reproducing others
results.

INTRODUCTION

L1 adaptive control has been used in several
aerodynamic control applications with success[1-7],
although, there are authors[3, 4] that consider that PI or PID
control may provide similar performance as the adaptive
scheme proposed (at least in some scalar systems) or that
L1 Control is even unnecessary[4]. Even though L1 control

has proven to be efficient in dealing with plant-model
mismatch, the appropriate choice of the prefilter needed
for the synthesis and application of the resulting controller
is not straight forward. Even more, we have detected
some discrepancies with previous results presented for the
wing rock problem and the satellite attitude control
problem. The cause of the discrepancy is explored and all
parameters and L1 conditions and bounds are being
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calculated to verify compliance with L1 Adaptive control
theory. It has been found that, unlike the results by
Hovakymian and Cao[6], the resulting controller does not
produce tracking and only with a different filter tracks
with stationary error.

MATERIALS AND METHODS

System dynamics: The general system dynamics are the
following[6]:

(1)       mx A x t b u t f t,x t  

where: x(0) = x0; y(t) = cT x(t) (Tmeans Transpose);
x(t)0Rn, is the (measured) state vector; Am0Rn×n is a
known Hurwitz matrix specifying the desired closed-loop
dynamics; b cT0Rn are known constant vectors; u(t)0R, is
the control input; f(t, x): R×Rn÷R is an unknown
nonlinear map, continuous in its arguments; y(t)÷R is the
regulated output. The initial condition x0 is assumed to be

inside an arbitrarily large known set.  withx0 0   

known ρ0>0[6]. The following assumptions are made:

C Uniform boundedness of f(t, 0). There exists B>0

such that:  f t,0 B, t 0  

C Semiglobal uniform boundedness of partial
derivatives of f(t)

There exists dft(δ)>0 and dfx(δ)>0 independent of
time for arbitrary δ>0 such that for arbitrary ||x||4#δ, the
partial derivatives of f(t, x) are piecewise-continuous and

bounded[6]        f t,x x d , f t,x t d .f f1 x t
       

The control objective is to design a full state feedback
adaptive controller system to ensure y(t) tracks a given
bounded piecewise continuous reference signal r(t) with
quantifiable performance bounds[6].

General L1 adaptive system architecture: The L1
adaptive Control Block systems are composed by:

State space System Representation (SR): The system
can be written in state-space form by using (1):

             T
x A x t b u t f t,x t ; x 0 x ; y t c x tm 0     

State Predictor (SP): The state predictor can be
considered as:

(2)              m
ˆˆ ˆt A x t b t u t t x t tˆx̂


     

Where:  and  are the         T ˆˆˆ ˆ ˆx 0 x ; y t c x t ; t R t R0       ˆ t R 

adaptive estimates.

Adaptation Law (AL): By means of the approach
proposed by Hovakymian and Cao[6], the adaptive laws
are defined by the projection operators as follow: 

(3)

          

        
        

T
0

T
0

T
0

ˆ ˆ ˆ ˆt Proj t , x t Pb x t , 0

ˆ ˆ ˆ ˆt P roj t , x t Pb , 0

ˆ ˆ ˆ ˆt P roj t , x Pbu t , 0


       

       

       




 

 

Where:
= The semi linear adaptive estimate of ˆ t

the nonlinear function
= The uncertain estimate input gain ˆ t

= The semi linear independent term of ˆ t

the adaptive estimate time function
= The state error     ˆx t x t x t 

= The adaptive gainR
 

Proj(v, z) = the projection operator of z towards v and
||x(t)||4 is the infinity norm of state vector x(t). The matrix
P is the solution of algebraic Lyapunov equation:

T
A P PA Qm m  

where P = PT>0, and Q = QT>0 (T means Transpose),
Hovakymian and Cao[6].

Control Law (CL): The Laplace transform of the control
signal u(s) is generated as the output of the following
(feedback) system:

(4)        gˆu s kD s s k r s   

where ή(s) is the Laplace transform of ή(t) given as:

(5)           ˆˆ ˆ ˆt t u t t x t t


      

where ή(t) is the input gain and nonlinear function
estimate;  is the semi linear adaptive     ˆ ˆt x t t  

estimate of f(t, x); k is the L1 filter gain; D(s) is the

Laplace transform of L1 filter;  is the T 1k 1 c A bmg
 

reference  signal  pre  filter  and  r(s)  is  the  Laplace
transform  of  reference  command  signal[6].  Figure 1
shows the interconnection or relation between these
blocks.
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Fig. 1: L1 Adaptive control block system interconnection

L1 Requisites and conditions
Conditions relating L1 filter: The conditions relating to
L1 filter design are:

C k>0, filter gain is positive
C D(s) must be a strictly proper transfer function which

lead to C(s)  transfer function given by:
       C s kD s 1 kD s  

C C(s) must be a Strictly proper stable transfer function,
for all ω0[ωl ωu], known bounds on ω, low and upper

C DC gain must be C(0) = 1. Let xin(t) be the signal

with its Laplace transform being     1
x s sI A xmin 0


 

C Since, Am is Hurwitz, k and D(s) must ensure that for
a given ρ0, bound on ||x0 = x(0)||4#ρ0, there exists

 such that d) is satisfied  1s sI Amr in 0L1

     

Uniform boundedness of unknown parameters: θ0º
(Known Convex Compact set). |σ(t)|#Δ0R+ known, œt$0. 
Uniform boundedness of rate of variation of parameters:

 
 

t d , t 0

t d , t 0





     

     





L1 norm condition:

(6) 
   

1

1

r

r g inLL

L
r

H s C s k r
G s

L B




  


 

where,  and            1
G s H s 1 C s , H s sI A bm


     T 1k 1 c A bmg

 

is the feed-forward gain required for tracking of step
reference command r(t) with zero steady-state error[6].
Further let:

Table 1: Coefficients for wing rock motion
α a0 a1 a2 a3 a4 W
27° 0.005 -0.01 0.2 -0.0025 0.025 0.9
35° 0.006 -0.012 0.2 -0.0075 0.04 1.2

(7)      
xf 1L d ,

 
        



where,  is an arbitrary small positive constant,?1

 If (d) is satisfied and all other expressedrr , L L    

assumptions, y(t) tracks r(t)[6].

Wing rock modeling and L1 adaptation control: Wing
Rock dynamics can be described by a second-order
nonlinear system[8-10]. An analytical model of wing rock is
given by:

(8)

           

          

30 1 3
22 2

r r r

24
2

r r

a a a
t t t a t t t

t t t

a
t t u t d t, t , t

t t

          


      

   

 

where,  Φ(t)0R  is  the  roll  angle  in  degrees,  Φ(t)  is
the roll angle speed in deg/s, Φ(t) is the roll angle
acceleration in deg/s2. Both the roll angle Φ(t) and its
derivative  Φ(t)  are  assumed  to  be  available  for
feedback.

In the same way, u(t)0R is the anti-symmetric aileron
deflection in degrees, ω0R is the unknown control
effectiveness;  a  is  the  angle  of  attack,

models disturbances and unknown    d t, t , t R  

nonlinearities, tr is the reference time conversion
coefficient.

The aerodynamic coefficients a0 to a4  depend upon
the angle of attack and are given in Table 1 for two fixed
values of attack α[10]. For the air speed vf = 30 m secG1 and
the wingspan bω = 169 mm,  the  reference  time 
conversion  coefficient  tr = bω/2vf = 0.0028 sec[6].

Letting  the state vector, it is then possible  T
x t ,    

to write the equation dynamics in state space
representation as:

(9)       m adx A x t b u t g t,x t   

With:

     T
0x 0 x ; t c x t  

where:  is the static feedback gain and T 2
A A bk , k Rm m m  

uad(t) is the adaptive control input. Considering the control
law as follow:
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         

     0

T
u t u t u t ; u t k x t ;m ad m m

0 1 0 1
A ; b ;c ;2 2 0a t a t 1 t0 r 1 r r

T
g t,x 1 k x g t,xm

   

     
       
        

  

letting g0(t, x) as follows:

       

        

2 3
0 r 2 3

2 2
r 4 r

g t,x t a t t a t

t a t t t d t, t , t

     

     

 

 

As a result of um(t) chosen value, Am turns Hurwitz:

(10)  0 1TA A bk
m m a a

m1 m2

 
       

(11)
2
r m1 0

m 2
r m2 r 1

t a a
k

t a t a

 
  

  

where am1 and am2  are design parameters specifying
desired closed loop dynamics. The adaptation control
signal should be according to L1 adaptive theory:

(12)        ad gˆu s kD s s k r s   

Where:
           ˆˆ ˆ ˆt t u t t x t t


      

The terms ή(s) and r(s) are the Laplace transforms of ή(t)
and r(t), respectively.

RESULTS AND DISCUSSION

Previous and actual simulation results: Performance of
the L1 control is measured according to the following
objective:

The L1 controlled system should track the state xref(t)
of a reference system using a control input uref(t) that
compensates the uncertainties and nonlinearities of the
real uncontrolled system, within the bandwidth of the C(s)
filter:

(13)         ref m ref ref refx t A x t b u t f t,x t   

With: xref(0) = x0 and the Laplace transforms of signals are
given as:

(14)        ref ref g

C s
u s s k r s   


With:

        T
t f t,x t ; y t c x trefref ref ref  

If the L1 norm condition (d) is satisfied (along with
the assumptions (a)-c)), then ρr is a uniform bound for the
reference state and  ρur a uniform bound for the reference
control input where: 

x ; uref refL Lr ur   
 

Where:

(15)   r1
ur r g LL

C s L B k r


     

And let γ1 be given by:

(16)
 
 

1

1

L
1 0

rL

C s

1 G s L

   
 

where γ0 and  β are arbitrary small positive constants. If
the adaptive gain Γ is chosen such:

(17)
 
 

m u

2
min 0

,

P

  
 

  

Where:

(18)
   

 
 

    

22 2
m u b u l

max
b u u

min

, 4 4

P
4 d , d ,

Q  

          


       



where, λmax/min is the max or min eigen value of matrix.

 It then follows that:r 1, .
u ur 2

         

(19)uL L
x , u

 
    

(20)      0L
ˆx t x t x t


   

where,  is the adaptation gain. Then     ˆx t x t x t , R
   

we have  and:x L 0 




(21)ref 1L
x x


  

(22)ref 2L
u u


  

Where:

(23)   
r1 1

2 1 1 0L L
C s L H s      

Let:

(24)     
T
0

1 T
0

c
H s C s

c H s


299



J. Eng. Applied Sci., 16 (9): 296-303, 2021

Table 2: Calculus for establishing if the L1 norm condition (d) is
satisfied in the wing rock system

Expression Results

74.1100      
L1

H s 1 C s G s
L1

 

Left side of condition (d)

136.3338       r g in r rLL1
H s C s k r L B

    

L1 condition (d), right side

Fig. 2: Simulink main blocks for wing rock with strictly
proper filter D(s) as described by Hovakymian
and Cao[6] and Eq. 25. Results obtained are as
shown in Fig. 3

where c00Rn is a vector that renders H1(s) Bounded Input
Bounded Output (BIBO) stable. Then, the system state
vector x(t) tracks the reference system state vector xref(t),
and correspondingly the system control input tracks the
reference  control  input  uref(t)  and  the  error  dynamics
x(t) of  L1  controlled  system  is  brought  arbitrarily 
small (#γ0). The filter D(s) used for calculation of the
norm of C(s) given by Hovakymian and Cao[6] is strictly
proper:

(25)     
   

2

2

s 500 s 0.004
D s

s s 368 s 0.00439

 


 

The filter gain k = 144 is used. If respective calculus
are made for establishing if the L1 norm condition (d) is
satisfied in the Wing Rock system according with
respective norms and bounds, the results are shown in
Table 2.

Which indeed is satisfied as right side must be greater
than the left side. It is simulated with Simulink and
MATLAB with main blocks as shown in Fig. 2 and 3.

Positive instability for the state vector is  T
x t     

obtained.  To  eliminate  this   instability   and   obtain   a 

Fig. 3: Wing Rock State vector x(t) unstable response.
 with L1 filter D(s) as Eq. 25  T

x t     

moderate  tracking  with  an   stationary   error   close   to
30%,  a  modification  of  L1  filter  was  required,
eliminating  the  pole  at  zero  and  increasing  the  filter
gain k:

(26)     
   

2

m 2

s 500 s 0.004
D s

s 368 s 0.00439

 


 

Gain k had to be modified to k = 144×150 = 21600.
The result for the state vector evolution is shown in Fig.
4. Bode diagrams are shown for both Dm(s), D(s) L1
filters in Fig. 5a (Mag), Fig. 5b (Phase) and Fig. 6.

As depicted in Fig. 4a and 4b, there is tracking of
reference command r(t) = 60 with a steady state error
close to 30% with r(t) = 20 and k = 18720, a steady state
error close to 16.6% is obtained.

In Fig. 5a, b  the frequency response of the modified
(proper) filtershows a frequency band between 10-2 to 102

Hz, decaying close to 3 dB at higher frequencies. For the
original filter shown in Fig. 6, at 10-2 Hz there is a gain
decay close to 40 dB and continues to decay to 0 dB at
102 Hz.   Frequencies   above   102   Hz   are   then 
suppresed in the original filter compared to the modified
filter. 

Design and simulation was performed  on two other
examples for the literature: the wing rock with L1 filter of
first order by Kharisov and Hovakimyan[8] and the Wing
Rock as treated by Cao et al.[9].

The second example is taken from Kharisov and
Hovakimyan[8] and consists of the Wing Rock problem
but using the first order L1 filter proposed:

(27) D s 1 s

With  filter  gain  k  =  50000.  Results  are  presented  in
Fig.  7  and  8.   Again,   simulation   reproduces   results 
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Fig. 4(a, b): (a) Wing Rock State vector x(t) stable

response.  time in seconds with a  T
x t     

reference command r(t) = 60 and (b) = Wing
rock state vector x(t) stable response.

 time in seconds, with a reference  T
x t ,    

command r(t) = 20. Filter gain k = 144×130
= 18720

obtained by Kharisov and Hovakimyan[8]. Finally, the 
third  example  is  taken  from[9] and again considers the
Wing Rock problem but with a different parameter
estimation scheme in which the dynamics of the system
are expressed as follows:

         Tx A x t b u t t H x tm  

where:

     T3x 0 x , H x t 1 x x x x x x x1 2 1 2 2 2 10

and d d d d d d0 1 2 3 4 5

     

    

Fig. 5(a, b): (a) Bode plot (Mag) for L1 filter (kDm(s))
modified with respect to Hovakymian and
Cao, [6] for Wing Rock, following Eq. 26 and
(b)  Bode  plot  (Phase)  for  L1  filter
((kDm(s)) modified with respect to
Hovakymian and Cao[6] for wing rock,
following Eq. 26

θ is the 1 by 6 parameter vector to be estimated, which is
different from the estimation done in the previous cases.
The filter used is first order:

(28)   C s 25 s 25 

And the control input u(t) applies only the filtering to

  Tˆ H x t :

       gu s k r s C s r s 

where,  (L = Laplace Transform). Results     Tr s L H x t 

obtained shown on Fig. 9, reproduce well what is
described by Cao et al.[9].
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Fig. 6: Bode plot for L1 filter (kD(s)) following Eq. 25
and  as  in  Hovakymian  and  Cao[6]  for  wing
rock

Fig. 7: Wing  rock  state  vector  x(t)  step  command 

(r(t) = 20)  stable response.    with first  T
x t     

order  L1 filter[8] and  wing  rock  simulation  with 
filters  Eq. 25 and 26

Fig. 8: Wing Rock state vector x(t) step command (r(t)
= 15) stable response.  with first order   T

x t     

L1 filter as proposed by Kharisov and
Hovakimyan[8]  and  simulink  software  as  used
in Wing Rock simulation with filters Eq. 25 and
26

Fig. 9: Wing rock state vector x(t) with sinusoidal 
command (r(t) = -6s in (0.15t) stable response[8].   T

x t     

with first order  L1 filter and different parameter
estimation as compared to parameters estimated
in Hovakymian and Cao[6] and Kharisov and
Hovakimyan[7] and simulink software with
changes compared to Wing Rock simulation with
filters Eq. 25 and 26

CONCLUSION

Although, L1 assumptions, bounds and conditions
hold in Wing Rock, no stable response is obtainable with
parameters and L1 filter proposed and used in
Hovakymian and Cao[6]. A change in L1 filter contrary to
L1 norm necessary and sufficient condition (d) as it is not
strictly proper, gives stable step response but with
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stationary error. Nevertheless, L1 controller shows good
stability and performance results, according to simulations
performed in this article which reproduce results obtained
by  Kharisov and Hovakimyan[8]. Good reproduction by
Kharisov and Hovakimyan[8] obtained of wing rock
treatment, requiring changes in estimation scheme,
reassure the validity of the simulation software developed
and provides confidence about the exception to L1
adaptive control theory found and exposed in this article.

In many other cases such as Rohr´s example and
other aerospace applications[5] with matched uncertainties,
L1 adaptive controllers perform well. As L1 filter
designed is considered an open question in systems such
as un-modeled actuator dynamics[6] where the unknown
transfer function F(s) of the actuator is non relative degree
one and minimum phase and in other systems with
unmatched nonlinearities, it is required a general
procedure for L1 filter designed, or changes to L1
Adaptive algorithm.
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