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Abstract: An automatic generic tool is developed to
identify the morphological growth phases of
microbiological data types using computer-vision and
statistical modelling techniques. In algae phage (phage)
typing, representative profiles of morphological growth
stages of different algae types are extracted. Present
systems rely on the subjective reading of the growth
profiles by a human expert which is time consuming and
prone to errors. The statistical methodology existing in
this work, provides for an automated, objective and robust
analysis of the visual image data, along with the facility
to cope with increasing data volumes. Validation is
performed by comparison to an expert manual
segmentation and labelling of the growth phage profiles.
The statistical analysis performed on time series data
extracted is important for understanding relationships
between parameters, provides insight to the growth curve
of micro algae and cyanobacteria (correlation) and an
essential step to forecast yield of biomass, etc. or predict
the duration to achieve a certain yield of a pigment or
protein, etc., for commercial applications. There are a
number of methods for modelling time series data and
being able to predict specific values; specifically,
regression analysis and Analysis of Variance (ANOVA)
are foremost among them. Computation of the correlation
coefficient aids in better understanding the relationships
that exist between various parameters that evolve with
time and change with different phases of the growth of the
organism (and cyanobacteria). This study focuses on
statistical techniques for analysis of time series data.

INTRODUCTION

The branch cytology which deals with the study of
cells in terms of their origin, structure, organelles and
functional properties, is of key importance in biology and
medicine. It consists of the recognition of cell types,
fundamental for understanding biological differentiation.

In this study, we investigate the feasibility of leveraging
machine learning for morphological features to enable the
identification of nine different algae types in an automated
fashion. More specifically, we explore and investigate the
efficacy of a number of different morphological and
spectral fluorescence features extracted from multi-band
fluorescence imaging data when used to train neural
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network classification models designed for the purpose of
identification of algae types in an automated manner.
Manual identification of cyanobacteria according to
correct taxonomy is generally impeded by obstacles such
as declining the number of taxonomists and the increase
in the number of described species, also discussed in
detail by Gaston and O’Neill and Soberon and
Peterson® which makes identification of samplings a
difficult and time consuming activity. Automated tools
may significantly contribution in species recognition by
facilitating reliable recognition of any specimens in a
population. Automated methods that rely on pattern
recognition and image analysis have been widely applied
for recognition and categorization of biological images in
the field of biodiversity®®*?. Content based retrieval is one
of the common text-based approaches in image retrieval
domain®*! in a way that images of specimens are
matched with images in data- base according to visual
content (colour, shape, texture) similarities. For
recognition of species, visual features that are extracted
from digital images based on morphology and taxonomic
information play a vital role.

A lot of work is carried by many by researchers in
the literature on this subject. The statistical image analysis
for automatic identification of bacterial types are
proposed!*®!. The artificial neural network approach for
bacterial classification has been investigated™”. The data
mining techniques are employed for the classification of
HEp-2 cells in Perner®™ in which a simple set of shape
features are used for classification of bacterial cells.
Wahlby et al.’ have investigated algorithms for
cytoplasm segmentation of fluorescence labelled cells
using statistical analysis techniques based on shape
descriptive features. A computer-aided system for the
image analysis of bacterial in microbial communities
using geometric shape features have been investigated in
Liu et al.®. The automatic identification and
classification of bacilli bacterial cell growth phases has
been proposed in and (2010) using geometric shape
features. A new image analysis tool to study biomass and
of three major groups in an alpine lake using geometric
features have been proposed in Posch et al.”y. An
efficient automated method for image-based classification
of microbial cells has been investigated. Quantification of
uncultured microorganisms by fluorescence microscopy
and digital image analysis has been carried out®??. The
cell image analysis ontology using geometric and
statistical features has investigated by Hiremath and
Bannigidad®,

MATERIALS AND METHODS
The slides and cover slips were prepared as: The

slides and cover slips were thoroughly cleaned, dried and
ensured of being free from dust, debris and grime because

it touches the object being observed and has greater
potential to contaminate the specimen if careful handling
is not undertaken. The flat slide was placed on a clean,
dry surface. A few drops of the sample were obtained
using plastic pipettes (sample taken from a clear surface).
A small amount is collected from the green area (sample
taken from the bottom) with a pair of tweezers and placed
on the centre of the slide. One drop of liquid sample was
squeezed out onto the direct centre of the flat slide.

The cover slip was gently lowered onto the flat slide.
One edge the cover slip was placed down first before
lowering the rest. The cover slip must not be pressed
down once it is in place. The slide and cover slip
combination was picked up and gently placed on the
viewing tray of the microscope.

RESULTS AND DISCUSSION

Let the horizontal or “x-axis’ represent the number of
days and the vertical or ‘y-axes represent the biomass
variation on each of the days. We have a total of 15
readings recorded on alternate days through an entire
month. The relationship between the number of days and
amount of biomass produced is calculated. Person
correlation is applied to the data set.

Analysis; Time series plot: The raw data tabulated
contains two variables: ‘X’ (time stamp) and ‘y’ (a
measurement of the parameter of interest). In all, there are
15 observations recorded through wet lab studies. A plot
of the parameter against time helps us study the trend in
the data.

Scatter plot: We plot the points on a graph to get a
scatter diagram (i.e., the values of two parameters for
corresponding time stamps). The scatter diagram helps us
understand the relationship between the two parameters:
whether the data is uncorrelated or the correlation is
positive or negative.

Time series plot: In our study, there is a positive
correlation (observed as an upward trend in the plot) till
a certain point of time (as the number of days increases
the value of either biomass/chlorophyll) and then we see
downward trend, a negative correlation is observed after
a certain reading. This indicates that the value of variable
‘X’ that is a number of days increases the value of the
biomass/chlorophyll a decrease as shown in Fig. 1.
Figure 2 shows the production of chlorophyllaand b
for the following species: Pediastrum sp., Chlorella sp.,
Scenedesmus sp., Scenedesmus quadriquada sp. and
Chlorococcum sp. We note that the yield of chlorophyll
b is more than compared with the production of
chlorophyll a. Further, both chlorophyll b,a increases
exponentially during the exponential phase and slowly
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Fig. 1(a-h): Scattershot showing the arrangement of data points on the map showing a positive correlation as the R? value
is near to one that signifies that the variables are closely associated with each other. A trend line is drawn

on the data set plotted

decline during the death phase and remain constant
during the stationary phase of the growth curve. The
production of chlorophyll is calculated for a month. The
production of chlorophyll b is highest in the lifetime of
Scenedesmus quadriquada sp.

Figure 3 shows plots of the content of chlorophyll a
in  Scenedesmus sp., Chlorella sp., Scenedesmus
quadriquada sp., Pediastrum sp. and Chlorococcum sp.
and Fig. 3 displays plots of the amount of chlorophyll ain
Nostos sp., Chroococcus sp. and Anabaena sp. We note
that among these, Chroococcus sp. produces the largest
quantity of chlorophyll a.

In biological terms, initially, i.e., during the lag
phase, the chlorophyll pigments do not show any
promising increase in the values as the cells starts to

adjust the culture medium and environment. This is the
lag phase. As time progresses, the quantity of pigment
(chlorophyll a or b) is seen to increase, initially the
increase is slow and at a point exponential these are the
lag and exponential phase of growth. After a certain
duration of time the quantity of pigments reaches a
maximum and remains the same (seen as a plateau in the
graph). Finally, the quantity of pigments decreases as the
cells decline. This is the death phase. Thus, the entire
growth cycle is divided into four phases: lag,
log/exponential, stationery and death as noted from
Fig. 3 using grids to separate each of the phases.

Statistical analysis based on regression analysis:
Regression analysis is used to identify the best line (or
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Fig. 2(a-e): The above figure indicates the estimation of chlorophyll a and b moving from left to right (a-e) shows that
in these species Pediastrum sp., Chlorella sp., Scenedesmus sp., Scenedesmus quadriquada sp. and

Chlorococcum sp.

curve) through the set of data points. We have resorted to
polynomial regression analysis to model our data. In this
form of regression, the relationship between the
independent variable x and dependent variable y is
modelled as an nth degree polynomial. Polynomial
regression fits using the least squares method. The least
squares method minimizes the variance of the unbiased
estimators of the coefficients, under the conditions of the
Gauss-Markov theorem. The mathematical approach for
the polynomial analysis can be expressed in the following
general formula:

Y =a+bX
Where:

ae QN x"2) -0 xy) be n(Qxy)-(2)0Y)
nQx -0 x)"2 n(Q>x"2)-(3x)"2

y=pX" P X" P X+ Dy
Where:
X = The independent variable
The dependent variable
The degree of the polynomial
The coefficient of the polynomial

T o
1

R? the square of the correlation coefficient used to
determine the strength of association between the two
variables is given by:

L0y SVE033(03Y
JInY X -y y2-(y) "2l

where the numerator denoted residual sum of squares
and the denominator indicates the total sum of squares.
For the purpose of the present study, we study the
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Fig. 3(a-e): Graph represents the estimation of pigments chlorophyll a during growth curve species under study

relationships between chlorophyll a, b and biomass and
also geometrical features such as area, major and minor
axes etc. Out of many parameters two are chosen at each
time and in that one is taken as independent and the other
as dependent variable for the plotting. A scatterplot
provides a visualization of the relationship between two
data sets. The dotted points on the graph represents the
data values which shows the visual representation of data.
In the above plots we are able to see that the points are
closer and lie together forming a positive pattern,
indication that the correlation value is high. A positive
correlation showing as the number of days increases the
amount of chlorophyll and even the biomass increases.

Interpretation of error bars: A line parallel to any one
of the axes and passing through the points on the graph
indicates the variation of the corresponding coordinate
values at those points in the graphs. This is called an error
bar. We have already established that the variation in
values (across experiments) is on account of sampling of
data from a population and is not significant. There is
always a possibility that an experimental effect would
have generated due to sampling errors. Here we consider
95% of confidence interval around the mean of 30
samples, if we repeat the experiment by phycologists’
standards, p-values indicate the variations are on
account of random experimental errors and not
significant.

10

Relating growth phases to time stamps (number of
days) based on pigment content: In Fig. 4, itis clear that
in almost all the above species growth curve shows that
the chlorophyll a or chlorophyll b increases slowly
between the 1st-5th day and the cells are treated as normal
(lag phase), from the 6th-23rd/25th day there is an
exponential increase in either chlorophyll a or chlorophyll
b content (log/exponential phase) and 25-29th day no
change in the contents of the pigments the cell enters into
grown-up stage (stationary phase) and the pigment
decreases as the nutrients of the culture decreases the
pigments also decreases from 29th day onward (death
phase). This quantification helps us train models and set
up experiments for predicting the yield on a certain day or
for computing the duration (number of days) it would take
to achieve a certain yield of the pigment or biomass.

Study of biomass: Another parameter that is estimated is
biomass at an optimal temperature. As the number of days
increases the contents of Biomass also increases as shown
in Fig. 5. Similar to the change in pigment values,
changes in biomass are also viewed as four phases: first,
during the Lag phase, there is negligible increase in
biomass value. As the days progress cells enter into the
log and exponential phase seen as a considerable increase
in the biomass. Then, during the stationary phase, biomass
remains unchanged. Finally, the value of biomass
decreases as the cells decline; this is an indication of the
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(b) Estimation of chlorophyll b
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Fig. 4(a-p): The error bars generated in the chlorophyll growth cycle of all the species and also a good fit line is drawn

for these data points and horizontal error bars. These error bars are caused due to random experiment
defects
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Estimation of Biomass of all species

Fig. 6: Consolidates estimation of biomass of the species Chlorococcum sp., Scenedesmus quadriquada, Scenedesmus
sp., Pediastrum sp. and Cyanothece sp show maximum biomass of 37.59071x10° mg L%, 87.85819x10° mg
L™, 65.27492x10° mg L™ and 12.43144x10° mg L™, respectively on 25th day of growth cycle, whereas
Chlorella sp., Nostos sp. and Anabaena sp. shows 21.6325x10° mg L™, 15.4356x10° mg L respectively on
23rd day of growth cycle. Chroococcus sp. and Anabaena sp. shows 41.43x10° mg L=" and 21.22096x10° mg
L~ on27th day and 21st day of growth cycle, respectively

death phase. Thus, the above graphs give a clear
indication that the maximum biomass of the species is
obtained during the exponential phase of the growth
curve. This parameter is valuable in commercial
applications in which algae are grown to extract yield
such as Spirulina (Fig. 6 and 7).

The error bars generated in the chlorophyll growth
cycle of all the species
Forecasting of parameter values based on the training
model: Treating the data in the tables above as a regular
time series (parameter measured against the number of
days), we construct a model based on training data for
which the value of the parameter for a corresponding time
stamp is known. Then, we use test data for which a
parameter has been measured for a given time stamp
(say, Day 3) and attempt to estimate the value of the
parameter for time stamp in the future (say, Day 17). In
all such predictions, we notice the value of the parameter
(such as biomass) predicted has a non-zero error when
compared to the ground truth (viz., the value estimated by
a biologist for that sample through wet lab experiments).
Having already established there is a variation even in the
‘ground truth’ that is not significant, we determine using
tests of significance that the deviation in the value
predicted by the model from the ground truth is indeed a
random ‘error’ that is acceptable within the margins of
variation of biological samples. The graphs below plot the
values obtained for forecasting parameter values based on
the training models developed along with the ground truth
values as measured by the biologist through wet lab
experiments (Fig. 8).

We observe that the forecast values are in good
agreement with the ground truth for most of the species in
the log/exponential phase that is most important

13

forcommercial applications. Forecast values tend to
remain high in the stationary phase and death phase,
because the linear model is not able to capture these dips
suitably. We must use a non-linear model to capture these
trends better. In Fig. 9, we demonstrate the use of the
Auto Regression Integrated with Moving Average
(ARIMA) model which incorporates corrections in the
predicted values.

Forecasting of values is greatly improved with
incorporating the moving average with the auto regression
in the model. This model both short term changes
captures the trend better than linear regression alone. We
do notice that spurts in growth are not accurately
modelled for some species such as with there being a
noticeable difference in the predicted value and ground
truth for a span of 3-5 days corresponding to the
exponential growth phase, however, over all, the model
outperforms simple linear regression for most of the
species considered in this study.

These results are a proof-of-concept that parameters
can be studied closely to be able to predict the yield for
various species of microalgae for commercial applications
where the yield of pigment or protein, etc., are of
immense value. It is also clear that studying the changes
in parameters helps us infer the growth stage of the
microalgae and can be corroborated through imaging
(using features extracted subsequent to automated
segmentation). There is much scope for further research
in understanding the values and building better time series
models for forecasting, etc. Since, this is the first study of
its kind that has both wet lab measurements in
conjunction with imaging studies, to promote
reproducible results, we have made the data set available
in the public domain. Further, a biologist or typical
end-user of a system such as this would not be interested
in the technical nuances of mathematical models or tuning
of parameters.
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Fig. 7(a-p): The error bars generated in the chlorophyll growth cycle of all the species and also a good fit line is drawn
for these data points and horizontal error bars. These error bars are caused due to random experiment defects

Chlorophyll b Forecasted values for Chlorococcum sp

@z

PREDICTION (MG /1

o
-

ROPHYLL A PRED ICTION (MG /ML)

(D) chiorophyllEhoreea e R A e ete 2 i quddsiquode

CHLOROPHYLL B
PREDICTION(MG.

Fig. 8(a-d): The forecast values of chlorophyll a, b in various species namely: Chlorococcum sp., Scendesmus sp.,
Scendesmus quadriquada ,Pediastrum sp., Chroococcus sp.

(a)
50 Biomass forecasted values for Chroococcus sp

40 " Biomass

30 " Farecasted (Biomass)

Biomass predictionx10 (mg mL™)

20
10

0 - IIIIl
-10

13 5 7 % 1113 15 1
078 1

18627208 % |2

No. of days

Fig. 9: Continue

15

(b)
— Biomass forecasted values for Scendesum sp
©, 120
£ X
o 100 » Biomass
E 80 A
@ B Forecast (Species2)
S 60
£ 4
8 20
=}
L
s 0
a
g -20
S 1/3/5/7/9/1113 557 8B BT 8D
o
03105468934 04 77.617.3 & 45.651.662.580.5 873855 83.3 804

BECE)1EAETEA B BMEYLS
No. of days



J. Eng. Applied Sci., 16 (1): 6-17, 2021

©
Biomass forecasted values for Scendesum sp
120

100 === Bjomass
mm Forecasted (Biomass)

80
60

—— Linear (Biomass)

40
20

185502820

Biomass predictionx10® (mg mL™)

-20
13 5 7

31 B 5 T B
0301105446769 33520.4277. 5477 .5046.0443 6152 5752 4750, 4697, 675, 5283, 2880 42
No. of days

Fig. 9(a-d): Forecasting biomass of various species
CONCLUSION

The present study suggest an automated framework
and generic tool that can transform a large sets of images
(visual information )that are categorized into a
probabilistic growth phases profile of cyanobacterial
species. The presents methodology utilizes statistical
decisions. The algorithm is designed in such a way that it
removes the irregularities and various variances existing
between the digital images and within these images also
helps the phycologist.

The results presented deliver a probabilistic outlining
per image group. Probabilistic growth phage profiling can
provide a strong basis for further analysis and
cyanobacterial type classification. Our study suggests a
generic tool that aids the microbiologist in renovating and
supplementing data into useful information for analysis.
An objective and consistent processing is provided. In
general, the tool we present provides an automated for the
processing and analysis of large amounts of data. In many
biological applications the amount of data is constantly
increasing and the need to shift from manual work to an
automated is of increasing importance for efficient and
accurate research and production.
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