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Abstract: A step hybrid block method for the solution of
Initial Value Problems (IVPs) in Ordinary Differential
Equations (ODEs) is presented in this study. The method
is formulated from continuous schemes obtained via.
collocation and interpolation techniques and applied in a
block-by-block manner as numerical integrator for first,
second and third order ODEs. The convergence properties
of the method are discussed via. zero-stability and
consistency. Numerical examples are included and
comparisons are made with existing methods in the
literature.

INTRODUCTION

In this study, we focus on direct integration of initial
value problems of the form:
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With the conditions y (a) = y0, y' (a) = y'0 y" (a) = y“0

a#x#b where m is the order of the Ordinary Differential
Equations (ODEs). We obtain the numerical solution of
(Eq. 1) by constructing a step block method:
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where either of  α0 (t) and β0 (t) do not varnish αk (t) = I,
βk (t) …0 and k = 1.

The solution of (1) for m$2 has been extensively
discussed in the literature using different approaches. 
Lambert (1973, 1991), Abdullahi (1999) and Brugnano
and Trigiante (1998), among others reduced higher order
Initial Value Problems (IVPs) to a system of first order
equations. Resulting from this are the setback highlighted
in their works.

Several numerical methods have been proposed to
improve on the efficiency and convergence of the existing
methods (Butcher, 2003; Yahaya et al., 2016; Adeniyi and
Alabi, 2011; Jator, 2007, 2010a, 2010b; Olusola, 2018;
Kuboye et al., 2018; Ismail, 2009; Ramos et al., 2016;
Simos, 2002; Sagir, 2014; Vigo-Aguiar and Ramos, 2006;
Olabode, 2009, 2013; Adeyefa, 2017).

The formulation of block method to integrate IVPs of
order one or higher order has been widely reported in the
literature. However, to use a formulated block method for
integration of several order IVPs, say first, second and
third  order  ODEs  has  not  been  commonly  reported.
Thus, the focus of this study is to formulate a self-starting 
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method for the numerical integration of first, second and
third order IVPs. In what immediately follows in the next
section, we consider the formulation of the proposed
block method.

MATERIALS AND METHODS

Here, we formulate a step hybrid method capable of
solving first, second and third order ODEs employing and
choose Chebyshev polynomials as our basis function. In
Eq.  1 and 2, we set m = 1, z = 0 and I = 0, 1, j = 1/4.
Thus, we introduce the Chebyshev polynomials:

(3)
k 8

j j
j 0

y(x) a T (x)






Equation 3 is interpolated at x = xn, its first and
second derivatives are collocated at x = xn+v, v = 0, 1/4, 1
while its third derivative is collocated at x = xn+c, c = 0,
1/4. As a result, we have:
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Solving  Eq.  4  using  Gaussian elimination approach
in order to get the unknown variables α which are
substituted into Eq. 3. This yields a continuous implicit
scheme of the form:
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Where, t = 2x-2xn-h/h

Equation 5, when evaluated at x = xn+cj, cj = 1, 1/4,
i.e., t = 1,-½, respectively, yields:
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Where the values of D, E and F are:
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Equation 6 is our proposed first, second and third
order IVPs solver.

Basic properties of the method: We shall consider in
this section, the analysis of basic properties of this method
such as order, error constant, zero stability and
consistency is investigated.

Order and error constant: Equation 6 derived is a
discrete scheme belonging to the class of LMMs of the
form:
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By Fatunla (1991) and Lambert (1991), we define the
local truncation error associated with Eq. 7 by the
difference operator:
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Where, y(x) is an arbitrary function, continuously
differentiable on [ a, b ]. Equation 8 in Taylor series about
point , we obtain the expression the expression:
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Zero stability of the method: To  analyze  the 
zero-stability  of the  method,  we (Eq.  10)  in  vector  
notation  form   of  column  vectors e  =  (e1, ...,  er )

T,  d 
=  (d1,  ...,  dr)

T,  ym = (yn+1, ..., yn+r)
T, F (ym) = (fn+1, ..., fn+r),

G (ym) = (gn+1, ...., gn+r), W (ym) = (wn+1, ..., wn+r) and
matrix A = (aij), B = (bij). Thus, Eq. 6 forms the block
equation:
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where, h is a fixed mesh size within a block.
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The first characteristic polynomial of the block
hybrid method is given by:
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In Eq. 10 and solving for R, the values of Rare
obtained as 0 and 1. According to Simeon (1988, 1991),
the block formulae represented by (Eq. 6) are zero-stable,
since from Eq. 10, ρ  (R ) = 0 satisfy |R|# 1, j = 1 and for
those roots with |Rj| = 1 the multiplicity does not exceed
two.

Consistency  and  convergence  of  the  method:  The
linear multistep  method  (7)  is  said  to  be  consistent  if 
it   has  order  ρ$1.  The  method  is  consistent  being  of
order 6.

According  to  the  theorem  of  by  Dahlquist  (1979),
the necessary and sufficient condition for a LMM to be
convergent is to be consistent and zero stable. Since, the
method satisfies the two conditions, hence, it is
convergent.

Numerical experiment: We consider in this section, four
test problems which includes first, second and third order
ordinary differential equations to test the effectiveness of
this new scheme.

Problem 1: We consider the third order IVP :

y" 3sin x, y(0) 1, y (0) 0,y (0) -2,h 0.1     

With exact solution y(x) = 3cos x+x2/2 -2which has
been solved by Olabode (2009) with step number k =6.
The numerical solution is displayed in Table 1.

Table 1: Comparison of error of the proposed method and error in
Olabode (2009)

t-values Error in new method, k = 1 Error in Olabode (2009), k = 6
0.1 2.0E-10 4.172279744E-09
0.2 4.0E-10 9.578546178E-08
0.3 2.0E-10 3.991586710E-07
0.4 3.0E-10 1.036864440E-06
0.5 9.0E-10 2.128509889E-06
0.6 1.1E-09 3.789539851E-06
0.7 1.5E-09 6.130086676E-06
0.8 1.3E-09 9.253867047E-06
0.9 1.5E-09 1.325714643E-05
1.0 2.0E-09 1.822777782E-05

Table 2: Comparison of errors of the proposed method and the existing
methods Mohammed and Adeniyi (2014), Mohammed
Error in new Error in Mohammed Error in

t-values    method and Adeniyi (2014) Mohammed
0.1 1.1×10G10 2.004×10G7 2.198×10G5

0.2 9.1×10G11 5.386×10G7 6.0704×10G6

0.3 6.1×10G7 8.84×10G7 1.0051×10G5

0.4 3.4×10G10 1.2297×10G6 1.40253×10G5

0.5 1.45×10G6 1.5750×10G6 1.79934×10G5

0.6 1.46×10G6 1.9204×10G6 2.16162×10G5

0.7 1.47×10G6 2.506×10G6 2.993×10G5

0.8 1.49×10G6 3.106×10G6 3.4561×10G5

0.9 1.5×10G6 3.705×10G6 4.1114×10G5

1.0 1.52×10G6 4.304×10G6 4.7656×10G5

Table 3: Comparison of errors of the proposed method and the existing
methods Ajileye et al. (2018), Sunday et al. (2013)
Error in new Error in Ajileye et al. Error in Sunday et al.

t-values     method         (2018)          (2013)
0.1 0 1.218026×10G13 5.574430×10G12

0.2 1×10G10 1.399991×10G13 3.9461.77×10G12

0.3 1×10G10 1.184941×10G12 8.183232×10G12

0.4 2×10G10 1.538991×10G12 3.436118×10G15

0.5 3×10G10 1.110001×10G12 1.929743×10G10

0.6 3×10G10 5.270229×10G12 1.879040×10G10

0.7 2×10G10 2.10898×10G12 1.776835×10G10

0.8 3×10G10 1.297895×10G11 1.724676×10G10

0.9 3×10G10 3.08229×10G11 1.847545×10G10

1.0 2×10G10 4.121925×10G11 3.005770×10G10

Problem 2: We consider the IVP y” = y’, y (0) = 0, y’ (0)
= -1, h = 0.1 with exact solution y (x) = 1-05e-0.5x which
has been solved in Mohammed and Adeniyi (2014) with
step number k = 5. The numerical solution is displayed in
Table 2.

Problem 3: We consider first order IVP y’ = 0.5 (1-y), y
(0) = 0.5, h = 0.1 with the exact solution y (x) = 1-0.5e-0.5x.
This  IVP  was  solved  by  Ajileye  et  al.  (2018), 
Sunday et al. (2013). The numerical solution is displayed
in Table 3.

Problem 4:We consider non-linear IVPs y”-x x (y’)2 = 0,
y (0) = 1, y’ (0) = ½, h = 0.003125 whose exact solution
is:

  1 2+x
y x 1+ In

2 2-x
   
 

The numerical solution is displayed in Table 4.
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Table 4 : Comparing the errors of the new block and existing methods for problem 4
Error in new Error by Kuboye et al. Error by Kuboye Error in Adeniyi and

x method, k=1 (2018), k = 3 (2015), k = 6 Alabi (2011) k = 6
0.1 0 5.850875E-13 9.577668E-10 0.1329867326E-09
0.2 0 2.848832E-12 2.368709E-09 0.5872691257E-08
0.3 0 6.328715E-12 3.732243E-09 0.1327845616E-07
0.4 0 6.756392E-09 5.475119E-09 0.2317829012E-07
0.5 0 1.380119E-08 1.142189E-08 0.3218793564E-07
0.6 1.0E-09 2.174817E-08 4.567944E-08 0.6871246012E-07
0.7 1.0E-09 1.073052E-07 2.055838E-06 0.1012728156E-06
0.8 1.0E-09 2.001340E-07 4.248299E-06 0.1231093271E-06
0.9 1.0E-09 3.088383E-07 6.660458E-06 0.2019286712E-06
1.0 2.0E-09 9.805074E-07 9.445166E-06 0.2990871645E-06

RESULTS AND DISCUSSION

The results obtained from the four test problems
considered are summarized in Table 1-4. The proposed
method is of step number k = 1 and it compares
favourably with existing methods despite their k>1
methods. In problem 2, our step length is h = 0.1 against
h = 0.01 used in Mohammed and Adeniyi (2014). The
proposed method still gives better accuracy even with
larger  h.  In  Table  3,  the  methods  developed  by
Ajileye  et  al.  (2018),  Sunday  et  al.  (2013)  performed
better than the new method in terms of accuracy but their
methods do not have the ability to solve higher order
ordinary differential equations.

CONCLUSION

A step block method has been formulated and applied
to  solve  first,  second  and  third  order  ordinary
differential equations directly without construction of
additional schemes or employing existing predictors for
implementation. Numerical experiments performed using
this method show that the method is consistent, efficient
and accurate. We therefore, recommend the method for
direct integration of first, second and third order ordinary
differential equations.
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