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Abstract: The quest for renewable, cost-effective,
environmentally friendly and sustainable alternative fuels
to run Compression Ignition (CI) engines has escalated
the tempo of research in biodiesel in recent decades.
Investigations aimed at improving combustion, engine
performance and emission characteristics of CI engines
fuelled with Fatty Acid Methyl Esters (FAME) have
increased substantially in recent years. Properties of
biodiesel are key parameters in relation to engine
performance, emission characteristics and its suitability as
CI engine fuel; these properties are influenced by the
Fatty Acid (FA) composition of the biodiesel. In order to
overcome the complexities related to real-time
experimental determination of biodiesel properties,
various prediction techniques have been used. This
current effort explores multiple linear regression to
formulate linear correlations for the prediction of the
density, Cetane Number (CN), Calorific Value (CV) and
Kinematic Viscosity (KV) of biodiesel using the five
commonest FAs (palmitic, stearic, oleic, linoleic and
linolenic acids). Input data were sourced from literature to
formulate linear relations for these FAME fingerprints
and the outcome subjected to statistical analysis. The
predictive capabilities of the models were verified using
other experimental data mined from various sources. The
outcomes of analysis shows that the adjusted R2 and
maximum absolute errors are 83 and 0.35% for density,
84.3 and 1.72% for CN, 43 and 0.98% for CV and 68.3
and 4.33% for KV. It is evident that linear correlations
established from five FAs are highly successful in
predicting density, CN, CV and KV of biodiesel from a
wide range of feedstocks.

INTRODUCTION

As  a  result  of  the  global  population  explosion,
rapidly expanding urbanization, industrial revolution and

economic development, global energy demand and
consumption has continued to increase with a huge chunk
of the energy being sourced from nonrenewable sources.
Fossil  fuel  contributed  86.9,  82.67  and  85%  to  global
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Fig. 1: Global total primary energy consumption by fuel

energy consumption in 2010, 2013 and 2016,
respectively. Similarly, in 2013, crude oil and coal
contributed 30.92 and 28.95% to global energy
consumption while this increased to33% for crude oil and
28% for coal in 2016 (BP., 2019). Over the past 15 years
oil has contributed a third of the global energy
consumption, closely followed by coal and natural gas
(Schiffer, 2016). Products of refined fossil fuels are used
to power internal combustion engines, particularly
Compression Ignition (CI) engines which continue to
contribute significantly to industrial growth, economic
and commercial growth, agricultural sector development,
social and household needs as well as transportation of
goods and services. Generally, global primary energy
consumption has continued to increase and is projected to
continue increasing (Fig. 1) (EEA., 2012).

The transport sector consumed about 28% of total
global energy and contributed 24% of global carbon
dioxide (CO2) emissions in the year 2016 (Statista, 2018).
According to the United States EPA. (2017), transport
vehicles contributed 71% of total greenhouse gas
emissions globally in 2010. The solution to this disturbing
trend is to develop clean and affordable alternative fuels
to reduce dependence on fossil fuels, guaranteeing an
amicable coexistence of humans and the environment and
ensuring sustainable economic growth. Reducing the use
of fossil-based fuel will ensure that air quality,
particularly around high-density traffic residential areas,
is maintained within World Health Organization (2006)
standards  to  safeguard  human  and  environmental
health.

Biodiesel, a renewable fuel, comprises mono-alkyl/
methyl esters of long chain fatty acids obtained from
various feedstocks including neat vegetable oils, used
vegetable oils, microalgae, animal fats, etc., biodiesel,
also known as Fatty Acid Methyl Esters (FAME) are
generated by various techniques including pyrolysis,
dilution or blending of oils, micro-emulsification and
transesterification and are dried to ensure compliance with
standards. Internationally acceptable specifications for

FAME are well documented in the American Standard for
Testing and Materials (ASTM) and European Union (EN)
documents such as ASTM D6751 and EN 14214,
respectively. Different countries set up their own
standards based on these two standards and other
international protocols to suit their particular geographical
locations (Jaaskelainen, 2009; ACEA., 2013). According
to Index Mundi (2019), based on reports by the United
States Energy Information Administration, global
biodiesel production grew from 25.46 thousand barrels
per  day  (mbpd)  in  2002-123.9  mbpd  in  2006  and  to
432.9 mbpd in 2012. Consumption was reported to be
22.26, 118.1 and 419.9 mbpd in 2002, 2006 and 2012,
respectively and is still increasing. Replacement of
Petroleum-Based Diesel (PBD) fuel with biodiesel offers
technical, economic, sanitation and economic benefits,
notably a simpler refining process, cheaper feedstock,
verifiable means of waste disposal, better engine
performance and reduction in the emission of greenhouse
gases and other hazardous gases. FAME is considered to
be the most widely used liquid renewable fuel in Europe,
accounting for about 80% of biofuel market share, owing
to  its  non-toxicity,  biodegradability  and  renewability
(Zhu et al., 2017).

There is near consensus among fuel refiners and
engine researchers regarding the importance of fuel
properties in determining fuel quality, fuel mixing, ease of
ignition, fuel combustion and other activities in the
combustion chambers. Properties such as oxygen content,
density, Cetane Number (CN), Kinematic Viscosity (KV),
Flash Point (FP), Cold Filter Plugging Point (CFPP),
Cloud Point (CP), Heating Values (HV) and Pour Point
(PP) have been found to influence fuel quality, handling,
safety, transportation, combustion, engine performance
and emission characteristics (Imdadul et al., 2016;
Zaharin et al., 2017). Fatty Acid (FA) compositions of
FAME have been an important factor in the determination
of its fingerprint properties, quality, storage capacity,
engine performance, and emission characteristics. Thus,
FA composition determines the major properties of
FAME.
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Experimental, numerical, simulation and statistical
investigations have been used to exploit the nexus
between FA composition of biodiesel and some of its
properties to predict these important properties.
Specifically, cold flow properties, KV, CN and other
biodiesel fingerprints are significantly influenced by FA
composition, branching, chain length, number and
position of double bonds. Samavi et al. (2016) predicted
the KV and FP of FAME as a function of its FA
composition and verified the outcome with experimental
data. Giakoumis and Sarakatsanis (2018) estimated the
CN, KV and density of biodiesels from their FA
compositions. Multiple Linear Regression (MLR) analysis
has been employed to develop compositional-based
models to predict biodiesel properties from various
feedstocks with considerable accuracy because the
derived correlations possess a sound theoretical basis
(Bamgboye and Hansen, 2008; Gopinath et al., 2009;
Piloto-Rodriguez et al., 2013; Giakoumis, 2013).
Statistical investigations were successfully carried out to
predict the density, CN, KV, FP, CFPP, CP and PP of
FAME based on the degree of saturation and FA
composition (Giakoumis, 2013). MLR, Artificial Neural
Network (ANN) and other machine learning techniques
were used to forecast the properties of FAME based on
their FA compositions. The outcome of the investigations
shows   that   these   techniques   are   able   to   predict
some  important  properties  of  the  FAME  samples
(Piloto-Rodriguez  et  al.,  2013;  Filho  et  al.,  2015;
Saldana et al., 2012; Balabin et al., 2011).

In determining the most occurring FAs in biodiesel,
FA composition of 123 samples of biodiesel found as a
result of a literature search were studied and found to
comprise 13 methyl esters, namely: palmitic acid (C16:0),
stearic (C18:0), oleic acid (C18:1), linoleic acid (C18:2),
linolenic acid (C18:3), arachidic acid (C20:0), palmitoleic
acid (C16:1), lauric acid (C12:0), myristic acid (C14:0),
eicosenic acid (C20:1), behenic acid (C22:0), erucic acid
(C22:1) and lignoceric acid (C24:0). Available
information  shows  that  C16:0,  C18:0,  C18:1,  C18:2
and  C18:3  are  the  most  common  FAs  in  biodiesels
(Filho et al., 2015; Hoekman et al., 2012; Meng et al.,
2014; Moradi-Kheibari et al., 2019).

With the increased use of compositional-based
models for the prediction of major FAME properties, the
question to be answered and which serves as the
motivation for this effort is whether biodiesel properties
can be accurately predicted using linear correlations
developed from the five most common methyl esters. The
aim of this investigation, therefore, wasto use MLR
techniques to formulate predictive correlations based
these methyl esters to predict density, CN, KV and CV.
The predictive capability of MLR-derived correlations for
fingerprint prediction using compositional-based models
using five methyl esters as inputs was tested and verified

from data mined from literature. This current effort was
limited to the application of MLR to predict the density,
CN, KV and CVof unblended FAME derived from
various feedstocks based on C16:0, C18:0, C18:1, C18:2
and C18:3.

MATERIALS AND METHODS

Inputs for the formulation of a reliable correlation for
the prediction of biodiesel properties based on weight
composition of five methyl esters requires a large and
widely spread experimental data base as reported in the
literature for the correlations to have a broad-based effect,
irrespective of the type of feedstock, location, production
technique and purification methods (Giakoumis and
Sarakatsanis, 2018; Giakoumis, 2018; Jeeva and
Rajashekar, 2018). The chosen five fatty acids have been
found to occur in most of the Gas chromatography-mass
spectrometry analyses of biodiesels, cutting across
saturated, monounsaturated and polyunsaturated fatty
acids. The general equation adopted for the MLR analysis
is given by Eq. 1. The predicted data for each property are
plotted against the experimental data to appraise the
predictive capability of the model using statistical indices.
The correlations are used to predict the outcome of
another set of data from the literature, different from the
data used to formulate the correlation and the absolute
errors calculated:

1 1 2 2 3 3 4 4 5 5y A+a +X a +X a +X a +X a +X    

Where:
y = The dependent variable to be predicted
A = The intercept
a1-a5 = The coefficients of each independent variable
X1-X5 = The percentage composition of each FA in the

sample

For this analysis, 1-5 represent C16:0, C18:0, C18:1,
C18:2 and C18:3, respectively which are the independent
variables.

RESULTS AND DISCUSSION

Density: The density of a material, measured in kg mG3 is
expressed as the mass per unit volume of the material.
The quantity of fuel admitted into the combustion
chamber is influenced by the density of the fuel, an
indication that density has a direct impact on the fuel
injection process, combustion, engine performance and
emission characteristics of FAME. Density also has
strong correlations with KV, CN and HV which affect the
air-fuel ratio and energy content of fuel injected into the
engine, degree of saturation, number of double bonds,
molecular weight and chain length (Sakthivel and
Ilangkumaran, 2017; Knothe et al., 2015).
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Table 1: Data for density prediction
Source C16:0 C18:0 C18:1 C18:2 C18:3 Exp. Density Pred. Density
Beef tallow 24.39 19.08 41.65 5.91 0.72 874.3 875.0
Canola 4.51 2 60.33 21.24 9.49 881.6 883.3
Chicken fat 24.06 6.42 41.43 18.83 1.06 876.3 878.9
Corn 11.81 2.13 27.35 57.74 0.63 882.2 882.8
Cottonseed 25.93 1.74 15.98 55.12 0.16 879.0 880.2
Croton 7.25 3.43 10.80 77.25 5.4 883.2 884.6
Hazenut 6.36 3.71 79.17 10.67 0.15 877.9 879.0
Jatropha 14.42 5.82 42.81 35.38 0.23 878.7 879.8
Karanja 10.89 7.89 53.56 21.34 2.09 882.9 880.1
Linseed 5.18 3.26 19.04 16.12 54.54 891.5 891.1
Mahua 22.23 22.49 39.01 14.87 0.1 874.5 873.0
Neem 17.57 16.6 45.83 17.79 0.72 876.2 875.5
Olive 11.47 2.83 74.52 9.54 0.51 881.2 878.6
Palm 42.39 4.2 40.91 9.70 0.29 874.7 873.1
Peanut 10.33 2.79 47.63 31.52 0.64 882.9 882.8
Rapeseed 4.07 1.55 62.24 20.61 8.72 882.2 883.4
Rice barn 18.12 2.17 42.35 34.84 0.93 880.9 880.0
Rubber seed 9.39 9.41 24.22 38.12 17.54 882.3 883.6
Safflower 7.42 2.38 14.41 75.31 0.09 883.8 885.1
Soybean 11.44 4.14 23.47 53.46 6.64 882.8 883.4
Sunflower 6.26 3.93 20.77 67.75 0.15 882.9 884.5
Soybean 15.69 6.14 42.84 29.36 2.03 880.6 880.2
Sunflower 25.1 13.23 44.36 12.06 1.18 873.0 875.3
Karanja 10.74 6.8 50.24 17.21 3.47 880.5 882.7
Karanja 8.38 5.32 40.54 14.91 2.84 890.6 888.7
Ibicellalutea 9.1 2.33 52.36 35.88 0.33 882.4 881.1
Onopordum nervosum 9.08 2.57 27.02 60.34 10.23 885.4 882.1
Peganum harmala 4.02 2.57 26.93 53.62 2.44 890.1 887.5
Smymium olusatrum 5.26 1.07 74.14 14.10 0.48 880.3 881.8
Solanum elaeagnifolium 9.86 4.24 20.92 63.32 1.07 885.9 883.4

Table 2: Statistical indices of the MLR Model for density 
Regression statistics Values
Multiple R 0.927
R2 0.859
Adjusted R2 0.83
SE 1.9
Observations 30

The data for the generation of the model were sourced
from various literature (Giakoumis and Sarakatsanis, 
2018;  Jeeva  and  Rajashekar,  2018; Houachri et al.,
2018). The MLR Model equation is as represented by Eq.
2 while Table 1 shows the independent variables, the
experimental dependent variables and the predicted
density. The predicted data is generated by the linear
correlations using the FA compositions:

1 2 3 4 5Density 914 0.52X 0.54X 0.34X 0.25X 0.14X     

The intercept value of 914 achieved by this effort is
comparably higher than the 869 reported by Giakoumis
(2013)  but  lower  than  the  923  established  by
Giakoumis and Sarakatsanis (2018) for comparable
investigations.   The   statistical   indices   show   that   the
R = 0.927 while the R2 of 0.859 shows that the predicted
dependent variable can be attributed to 85.9% of the
independent variables in 30 observations (Table 2). A
standard error of 1.9 is suggestive of a satisfactory
correlation   between    the    model    equation    and    the 

Fig. 2: The predictive capability of the density model

experimental  data,  confirming  the  capability  of  the
model equation to adequately predict the dependent
variable.

The model was tested on a new set of experimental
values, different from those used in Table 1 in order to
ascertain  the  predictive  reliability  of  the  model  using
Eq. 2. As shown in Table 3, a negligible error was
established with a maximum of 0.35%. The predictive
capability of the model is shown by plotting the
experimental data with the predicted data (Fig. 2). The
predictive capability of this model gave a higher R2-value
than   the   outcome   of   a   similar   prediction   by
Pratas et al. (2011).
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Table 3: Density model verification
Biodiesel Researchers Exp. values Pred. values Error (%)
RME Zhang et al. (2018) 882.00 882.81 0.09
SFME Zhang et al. (2018) 885.00 884.82 0.02
SME Zhang et al. (2018) 886.00 883.40 0.29
CSME Zhang et al. (2018) 882.00 879.06 0.33
HME Gulum and Bilgin (2017) 874.07 877.11 0.35
PBME Ruhul et al. (2016) 869.50 867.96 0.18
JBME Ruhul et al. (2016) 880.30 879.19 0.13
ALBME Ruhul et al. (2016) 875.70 877.04 0.15

Table 4: Measured and predicted data for cetane number
Source C16:0 C18:0 C18:1 C18:2 C18:3 Exp. CN Pred. CN
Aphanamixis polystachya Park 23.1 12.8 21.5 29 13.6 48.52 49.50
Azadirachta indica 14.9 14.4 61.9 7.5 0 57.83 58.68
Moringa oleifera Lam 9.1 2.7 79.4 0.7 0.2 56.66 58.67
Mesua ferrea Linn 10.8 12.4 60 15 0 55.1 56.80
Corylus avellana 3.1 2.6 88 2.9 0 54.5 57.44
Basella rubra Linn 19.7 6.5 50.3 21.6 1.1 54.0 55.83
Ervatamia coronaria Stapf 24.4 7.2 50.5 15.8 0.6 56.33 57.70
Aleurites moluccana wild 5.5 6.7 10.5 48.5 28.5 34.18 36.75
Vallaria solanacea Kuntzc 7.2 14.4 35.3 40.4 0 50.26 52.15
Holoptelia integrifolia 35.1 4.5 53.3 0 0 61.22 62.08
Mappia foetida Milers 7.1 17.7 38.4 36.8 0 50.7 52.83
Swietenia mahagoni Jacq 9.5 18.4 56 0 16.1 52.26 52.02
Madhuca indicai JF Gmel 17.8 14 46.3 17.9 0 56.61 57.34
Anamirta cocculus Wight and Hrn 6.1 47.5 46.4 0 0 64.26 60.80
Broussanetia papyrifera Vent 4 6.1 14.8 71 1 41.25 45.56
Beef tallow 24.39 19.02 41.65 5.91 0.72 60.9 60.35
Canola 4.51 2 60.33 21.24 9.49 54.8 49.97
Chicken fat 24.06 6.42 41.43 18.83 1.06 57.0 57.18
Coconut 9.69 0 2.83 6.83 0 61.0 60.95
Corn 11.81 2.13 27.35 57.74 0.63 52.5 48.60
Cottonseed 25.93 1.74 15.98 55.12 0.16 53.3 50.98
Hazelnut 6.32 3.71 79.17 10.67 0.15 53.8 56.33
Jatropha 14.42 5.82 42.81 35.38 0.23 55.7 53.21
Karanja 10.89 7.89 53.56 21.34 2.09 55.4 54.59
Mahua 22.23 22.49 39.01 14.87 0.1 56.9 58.72
Olive 11.47 2.83 74.52 9.54 0.51 58.9 56.98
Palm 42.39 4.2 40.91 9.7 0.29 61.2 60.93
Peanut 10.33 2.79 47.63 31.52 0.64 54.9 53.27
Rapeseed 4.07 1.55 62.24 20.61 8.72 54.1 50.38
Waste cooking 15.69 6.14 42.84 29.36 2.03 56.2 53.70

Cetane Number (CN) is a dimensionless parameter
and one of the most important properties of fuel that
relates to its self-ignitability and ignition delay
characteristics in a CI engine. FAME structure, FA
composition, number and position of double bonds, chain
length, degree of saturation/unsaturation, boiling point,
the heat of vaporization, the heat of combustion, etc. have
been reported to substantially affect CN. Engine
combustion noise level, vibration, heat release rate,
engine performance and generation of pollutants are
influenced by the CN of FAME. Higher CN is believed to
be a precursor for less ignition delay time, lower
combustion noise, higher power as well as less emission
of  soot,  NOx,  CO  and  SO2   (Sajjadi  et  al.,  2016;
Mishra et al., 2016).

Bamigboye  and  Hansen  (2008),  Tong  et  al.
(2011), Ramadhas et al. (2006), Knothe (2005) and
Piloto-Rodriguez et al. (2013), among other researchers
have estimated CN using a percentage of FA
compositions as inputs by MLR/ANN or both but with a
higher number of methyl esters (>5 methyl esters). This
present  effort  is  limited  to  the  use  of  the  five  most

Table 5: Statistical indices of the MLR Model for cetane number
Regression statistics Values
Multiple R 0.918
R2 0.843
Adjusted R2 0.810
SE 2.550
Observations 30.000

common FAs as inputs. The general linear regression
equation (Eq. 1) is transformed into Eq. 3 through MLR
for the prediction of the CN. The intercept value of 61.84
is comparable with values of 61.1 predicted by
Bamigboye  and  Hansen  and  62.2  predicted  by
Gopinath et al. (2009):

(3)
1 2

3 4 5

Cetane number 61.84+0.07X +0.01X

0.05X 0

 

.22X 0.51X

 
 

Table 4 shows the FA and CN measured from
experimental data sourced from literature (Giakoumis,
2013; Tong et al., 2011) and the dependent output
predicted by the model (Table 5). A total of 30 input data
were used to generate the model. The source of the data 
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Table 6: Cetane number model verification
Sources Researchers Exp. values Pred. values Error (%)
HME Gulum and Bilgin (2017) 55.66 55.79 0.23
JBME Ruhul et al. (2016) 53.50 53.67 0.32
ALBME Ruhul et al. (2016) 55.50 55.11 0.72
Madhuca butyracea Mac Tong et al. (2011) 65.27 64.46 1.26
Basella rubra Linn Tong et al. (2011) 56.33 56.99 1.15
Ervatamia coronaria Stapf Tong et al. (2011) 56.33 57.31 1.72

Fig. 3: The predictive capability of the cetane number
model

covered a wide range of feedstock type to ensure that the
model would have a wide range of applications in view of
the variability of CN with feedstock type. Table 6
illustrates the statistical indices of the model. The
developed model was found to be significant and
competent to adequately predict the dependent variable.
The R-value of 0.918 and R2 value of 0.843 indicates that
84.3% of the independent variable determined the
outcome of the model. A standard error of 2.55 displays
a good statistical correlation between the model equation
and the experimental data.

The model was tested to predict the CN of other
reported experimental data available in the literature apart
from those used in Table 4 as a way of verifying the
predictive capability of the model. As shown in Table 6,
the highest error obtained was 1.72% which can be
adjudged a good result considering the wide variability of
the feedstock. Figure 3 shows the plot of experimental
data against predicted data to show the predictive
capability of the model.

Kinematic viscosity: Kinematic Viscosity (KV) is the
degree of the resistance of fluid flow as a result of the
internal friction of a layer of fluid flowing over another
layer and has been found to affect fuel injection and fuel
atomization among other critical fuel behavior properties.
The high value of KV predisposes the fuel to produce a
large droplet size, enhanced polymerization reaction,
more carbon deposits, poorer vaporization, small injection
spray angle and better in-cylinder penetration of the fuel
spray. Increased KV often leads to weaker fuel
combustion, higher oil dilution, and increased emission of
smoke and other pollutants. KV is closely related to
density, specific gravity, degree of unsaturation, location

Fig. 4: The predictive capability of the kinematic
viscosity model

of double bonds and molecular weight (Hong et al., 2014;
Saxena et al., 2013). At low temperatures fuels with high
KV pose critical challenges while too low KV can cause
insufficient lubrication in fuel pumps, increased leakage
and wear (Joshi and Pegg, 2007).

The model correlation as shown in Eq. 4 is arrived at
from the general format stated in Eq. 1. The model is
significant and sufficient to predict the dependent variable
within an acceptable standard. Table 7 depicts the FA
composition, the experimentally measured KV sourced
from literature and the MLR predicted data. With the R2

of 0.683 as shown in Fig. 4, 68.3% of the independent
variable contributed to the prediction of the dependent
variable. The R-value of 0.83 and standard error of 0.33
with five methyl esters is comparable to the outcome of
similar research by Giakoumis and Sarakatsanis (2018)
with eight methyl esters:

(4)
1

2 3 4 5

Kinematic viscosity 1.22+0.03X +

0.07X +0.04X +0.03X +0.02X



Compared to the capability of MLR to predict CN,
the model was not as accurate in predicting KV but was
significant enough to predict the dependent variable
within reasonable error. The predictive capability of the
model was tested with experimental data, apart from the
data used in Table 7 and 8 and the outcome of the
verification of the predictive capability model is shown in
Table 9. The model verification presented a maximum
error of 4.33%. Although, this is a higher error value
compared with absolute error for density and CN in the
preceding sections, it is however, lower than similar
results found in the literature.
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Table 7: Experimental and predicted data for kinematic viscosity
Source C16:0 C18:0 C18:1 C18:2 C18:3 Exp. KV Pred. KV
Beef tallow 24.39 19.08 41.65 5.91 0.72 4.83 4.96
Canola 4.51 2 60.33 21.24 9.49 4.4 4.48
Chicken fat 24.06 6.42 41.43 18.83 1.06 4.81 4.44
Corn 11.81 2.13 27.35 57.74 0.63 4.32 4.26
Cottonseed 25.93 1.74 15.98 55.12 0.16 4.7 4.19
Croton 7.25 3.43 10.8 77.25 5.4 4.48 4.23
Hazenut 6.36 3.71 79.17 10.67 0.15 4.55 4.84
Jatropha 14.42 5.82 42.81 35.38 0.23 4.72 4.56
Karanja 10.89 7.89 53.56 21.34 2.09 5.04 4.65
Linseed 5.18 3.26 19.04 16.12 54.54 4.06 4.06
mahua 22.23 22.49 39.01 14.87 0.1 5.06 5.25
Neem 17.57 16.6 45.83 17.79 0.72 4.72 5.05
Olive 11.47 2.83 74.52 9.54 0.51 5.05 4.75
Palm 42.39 4.2 40.91 9.7 0.29 4.61 4.60
Peanut 10.33 2.79 47.63 31.52 0.64 4.77 4.31
Rapeseed 4.07 1.55 62.24 20.61 8.72 4.63 4.47
Rice barn 18.12 2.17 42.35 34.84 0.93 4.7 4.42
Rubber seed 9.39 9.41 24.22 38.12 17.54 4.79 4.46
Safflower 7.42 2.38 14.41 75.31 0.09 4.1 4.11
Soybean 11.44 4.14 23.47 53.46 6.64 4.29 4.28
Sunflower 6.26 3.93 20.77 67.75 0.15 4.53 4.22
RME 3.57 0.87 65.18 22.27 8.11 4.556 4.55
SMEA 10.49 4.27 24.2 51.36 7.48 3.67 4.25
SMEB 10.81 4.54 24.96 50.66 7.27 4.41 4.28
GMSME 3.97 2.99 82.54 4.98 3.7 4.87 4.77
YGME 17.44 12.38 54.67 7.96 0.69 5.02 4.82
GP 10.57 2.66 41.05 36.67 7.1 3.96 4.36
PBME 38.1 4.1 44.2 11 0.3 4.56 4.61
JBME 17.1 6.4 41.8 32.9 0.2 4.27 4.58
Coconut 13.83 3.94 14.3 4.73 0 2.45 2.52
Cottonseed 24.09 2.56 15.74 56.99 0 3.99 4.22
ALBME 14.8 16 41.3 26.6 0.2 5.38 4.97
Soy A 16.18 3.82 28.2 50.46 0 3.74 4.34
Rapeseed 5.26 1.63 62.94 20.94 6.99 3.942 4.51
Soy B 10.18 3.82 28.5 35.46 0 3.96 4.34

Table 8: Statistical indices of the MLR Model for kinematic viscosity
Regression statistics Values
Multiple R 0.830
R2 0.683
Adjusted R2 0.629
SE 0.330
Observations 35.000

Calorific value: The Calorific Value (CV) of a fuel is a
measure of or degree of, its heating capacity. A CV is
measured in kilojoules per kg (kJ kgG1) and is commonly
defined as the quantity of energy generated by the
complete combustion of a known volume of fuel under
stipulated conditions. The gross CV, also known as the
Higher Heating Value (HHV) is a measure of the fuel’s
heat of combustion when the water’s heat of combustion
is completely condensed and the heat contained in the
water vapor is fully retrieved (Kaisan et al., 2017). The
net CV, also known as the Lower Heating Value (LHV),
is measured when the product of the fuel’s combustion
includes water vapor and the heat in the water vapor is not
retrieved. The difference between the HHV and LHV is
termed the heat of vaporization of water. FAME is
reputed  to  contain  higher  oxygen  content  than
Petroleum-Based Diesel Fuel (PBDF); it follows,
therefore, that FAME has a LHV compared  to PBDF.

This fact accounts for the higher quantity of FAME
injected for combustion to achieve the required engine
power (Atabani and da Silva Cesar, 2014). An increment
in the chain length of fuel molecules and the
carbon/nitrogen to nitrogen/oxygen ratio of FAME results
in  a  higher  CV  (Ramirez-Verduzco  et  al.,  2012; 
Sanli  et  al., 2014). 

Without a doubt, a higher CV is needed for effective
combustion of FAME in an unmodified CI engine
because of its desirable effects on combustion of IC
engines. The lowest recommended value for the CV of
biodiesel fuel for heating purposes as specified by EN
14213  is  35  mJ  kgG1  (Muralidharan  et  al.,  2011;
Rashid et al., 2009). Apart from oxygen content, other
factors that influence the HV of FAME include the degree
of saturation, number of double bonds, C:O ratio, C:H
ratio, and feedstock (Hoekman et al., 2012). Some
properties like CP, density, FP and KV have been found
to have strong correlations with HVs. In terms of
emission, the higher quantity of FAME that needs to be
injected into the combustion chamber to meet the required
engine power has been found to affect PM and NOx
emissions, particularly within an exhaust gas recirculation
system   (Rakopoulos   and   Giakoumis,   2009; 
Giakoumis et al., 2012).

1957



J. Eng. Applied Sci., 15 (8): 1951-1961, 2020

Table 9: Kinematic viscosity model verification
Source Researchers Exp. values Pred. values Error (%)
Rapeseed Geacai et al. (2015) 4.67 4.84 3.57
POME Ali et al. (2016) 4.61 4.79 3.72
Soybean Martinez et al. (2014) 4.04 4.2 3.86
Sunflower Martinez et al. (2014) 4.55 4.61 1.24
Jatrop acurcas Martinez et al. (2014) 4.46 4.28 4.33

Table 10: Experimental and predicted data for calorific value
Source C16:0 C18:0 C18:1 C18:2 C18:3 Exp. CV Pred. CV
Corn 11.81 2.13 27.35 57.74 0.63 40.19 40.163
Cottonseed 25.93 1.74 15.98 55.12 0.16 40.48 39.879
Croton 7.25 3.43 10.8 77.25 5.4 40.28 40.401
Hazelnut 6.32 3.71 79.17 10.67 0.15 39.8 40.04
Jatropha 14.42 5.82 42.82 35.38 0.23 40.38 40.062
Karanja 10.89 7.89 53.56 21.34 2.09 40.275 40.106
Peanut 10.33 2.79 47.63 31.52 0.64 39.93 40.071
Rapeseed 4.07 1.55 62.24 20.61 8.72 40.335 40.154
Rice bran 18.12 2.17 42.35 34.84 0.93 40.475 39.929
Rubber seed 9.39 9.41 24.22 38.12 17.54 40.35 40.349
Beef tallow 24.39 19.08 41.65 5.91 0.72 40.04 39.976
Canola 4.51 2 60.33 21.24 9.49 39.975 40.162
Chicken fat 24.06 6.42 41.43 18.83 1.06 39.89 39.821
Lard 25.1 13.23 44.36 12.06 1.18 39.95 39.887
Olive 11.47 2.83 74.52 9.54 0.51 40.28 39.926
Neem 17.57 16.6 45.83 17.79 0.72 39.96 40.112
Mahua 22.23 22.49 39.01 14.87 0.1 40.18 40.114
Safflower 7.42 2.38 14.41 75.31 0.09 40.155 40.339
Waste frying oil 25.043 4.283 37.942 30.032 0.19 39.223 39.811
Waste frying oil 25.95 3.899 43.574 23.637 0.265 39.833 39.754
Waste frying oil 27.614 3.93 42.754 22.805 0.281 39.312 39.719
Waste frying oil 29.117 4.375 37.455 26.233 0.21 39.259 39.717
Waste frying oil 25.645 3.863 43.228 24.306 0.271 39.441 39.762
Waste frying oil 41.438 4.775 40.636 10.293 0.182 39.741 39.413
Waste frying oil 40.637 3.369 42.104 9.958 0.173 39.336 39.401

It is believed that HVs can be predicted using the FA
composition of FAME. Only a few citations are available
in the literature to establish a linear correlation to link
HVs with FA composition as far as the researchers know.
Specifically, Sanli et al. (2014), Giakoumis (2013) and
Giakoumis and Sarakatsanis (2018) have predicted the
HVs using a percentage of FA compositions as inputs
although they used more than five methyl esters. This
present effort is limited to the use of the five most
common FAs as input, using the MLR approach. Input
data   was   sourced   from   the   data   sets   available   in 
the  literature  (Giakoumis  and  Sarakatsanis,  2018; 
Sanli et al., 2014).

The model correlation, shown in Eq. 5 is arrived at
from the general format (Eq. 1). The model wasfound to
be significant and adequate to predict the CV within an
acceptable standard. Table 7 shows the five FA
compositions, the experimentally determined CV (mJ/kg)
sourced from literature and the MLR predicted data.
Equation 5 was arrived at by generating a linear
correlation between the experimentally measured CV and
the MLD predicted CV (Table 10). The intercept was
found to be 40.144 while C16:0 and C18:1 had a very
minimal but negative effect on the output data. The
predictive capability of the model is shown in Fig. 5:

Table 11: Statistical indices of the MLR Model for calorific value
Regression statistics Values
Multiple R 0.66
R2 0.43
Adjusted R2 0.28
SE 0.33
Observations 25.00

(5)
1

2 3 4 5

Calorific Value 40.144 0.02X +

0.017X 0.001X +0.004X +0.005X

 


The statistical analysis (Table 11) shows that the
model is significant with the R2 of 0.43. This implies that
43% of the independent variable (input) contributed to the 
prediction of the dependent variable (output). The R-value
of 0.66 and standard error of 0.33, using only five methyl
esters is comparable to the outcome of similar research
(Giakoumis  and  Sarakatsanis,  2018;  Hong  et  al.,
2014; Sanli et al., 2014). The model was verified with
different   sets   of   data   sourced   from   the   literature 
and  was  found  to  satisfactorily  predict  the  CV 
despite the diverse nature of the FAME sources. The
difference between the measured and the predicted CV
was   negligible   and   within   acceptable   standards 
(Table 12).
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Table 12: Calorific value model verification
Source Researchers Exp. values Pred. values Error (%)
Jatropha Mofijur et al. (2013) 40.536 40.501 0.09
Palm Atabani et al. (2012) 39.907 39.863 0.11
Corn Gulum and Bilgin (2015) 39.93 39.538 0.98
Canola Hong et al. (2014) 39.64 39.615 0.06
Soybean oil Hong et al. (2014) 40.04 39.907 0.33
Grape Seed Hong et al. (2014) 39.82 39.968 0.37
Karanja Jose and Anand (2016) 39.66 39.542 0.3

Fig. 5: The predictive capability of the Calorific Value
model

CONCLUSION

One of the motivations for the use of FAME as CI
engine fuel is safer handling, improved engine
performance, and mitigated emissions. Experimental
determination of FAME fingerprint, which is a key
determinant for the behavior, handling, storage,
transportation, performance and emissions of the fuel is
onerous and laborious and requires costly laboratory
architecture and highly trained technical personnel.
Appropriately developed models and prediction
correlations are considered to be a faster, cheaper and
easier method of determining these properties based on
certain criteria and conditions. The degree of saturation,
chain length, branching, number and position of double
bonds are key parameters in the performance of biodiesel.
FA compositions of biodiesel are dependent on the type
of feedstock, and to some extent on its production
parameters and techniques which greatly influence the
properties of FAME based on the proportion of the methyl
esters present in the biodiesel.

This current effort employed the five most common
methyl esters, namely palmitic acid (C16:0), stearic acid
(C18:0), oleic acid (C18:1), linoleic acid (C18:2), and
linolenic acid (C18:3) to predict density, KV, CN and CV
of FAME using the MLR approach. A linear correlation
was generated for the individual fingerprints and
employed to predict the output using data extracted from
the literature. The model was analyzed statistically to
determine the standard error and other statistical indices.
Predictive capability and model verification were carried

out to test the competency and accuracy of the model
within acceptable limits. In conclusion, the following
points can be deduced: Some FAME properties can be
predicted by the proportion of methyl esters as a solution
for difficulties in the experimental determination of the
properties. Five FAs are enough to generate a linear
correlation using MLR to accurately predict the density,
KV, CN and CV of FAME.

The outcome of the model verification shows that the
correlation generated by this methodology can be relied
upon to correctly predict the dependent outcomes being
sought.

Going forward, even more accurate prediction
correlations and models should be developed for
predicting properties, performance, fuel mixing,
combustion and emission characteristics with linear and
nonlinear relations. This will eliminate the cumbersome
experimental determinations of these parameters with a
view to advancing capacities in engine research. 
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