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Abstract: The study presents a mathematical model of temperature distribution for a gas flow in a pipeline with heat
exchange through the wall. Modeling is performed in a one-dimensional (hydraulic) approximation but the temperature
distribution across the pipe near its wall (thermal boundary layer) is taken into account. This model includes two
independent parameters that contain information about the heat-conducting properties of gas and pipe walls, taking into
account thermal insulation. The resulting equation is proposed for use for field gathering plumes. The parameter that
includes the heat transfer coefficient through the pipe wall, when setting the task of determining the moment of the
beginning of hydrate formation in the field plumes is not known in advance and is subject to identification by comparing
the calculation data with the measurement information. To solve such (inverse) problems, an analytical form of
representation of the dependencies between the process parameters is important which determines the relevance of the
presented result. The novelty lies in the fact that the obtained analytical dependence for the temperature distribution
along the pipeline describes the heat transfer through the wall (through the thermal boundary layer), the thermal
conductivity inside the gas and the convective heat transfer along the flow.

Key words: Hydraulic approximation, thermal boundary layer, diagnostics of gas hydrate formation in field plumes,
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INTRODUCTION

To find the temperature distribution along the field
gas gathering pipeline (plume), a mathematical model is
used which takes into account the heat transfer across the
stream and at the same time is one-dimensional in terms
of gas movement. On the one hand, this model is quite
simple and on the other hand, information about the
physical properties of the processes occurring in the
plume is reduced to two parameters, one of which
(conditionally) is responsible for heat transfer from gas to
wall  and  the  other  for  thermal  conductivity  inside  the
gas  and  convective  heat  transfer.  As  a  result,  an
analytical  expression  for  the  temperature  distribution
along  the  length  of  the  plume  is  obtained  which  is
suitable for determining the beginning and end of the
hydrate   formation   process.   Due   to   the   complexity
and  multifactorial  nature  of  this  process  (difficult  to
direct mathematical modeling (Buchinskii, 2009;
Bondarev et al., 2008; Buts, 2010) and therefore, requires
the solution of inverse problems), it is the analytic
expression for temperature distribution that is relevant
from a practical point of view and is the subject of
novelty.

The construction of a mathematical model is based on
the concept of the existence of a turbulent core inside a
gas flow (Xu et al., 2009) in which intense convection
heat transfer takes place and the temperature averaged
over the cross section can be considered the temperature

of the entire core. With a developed turbulent flow near
the pipe wall, there is practically no stable velocity
profile, only the boundary layer is present and it can be
assumed that the gas flow velocity is characterized by one
average value V. The temperature distribution over the
cross section, in contrast to the velocity distribution at the
same time, cannot be considered constant, if only because
unlike gas, heat penetrates through the pipe wall.

MATERIALS AND METHODS

Mathematical model: The coordinates x, r are
considered, respectively along and across the pipe while
x counted from the entrance to the plume and r-from the
axial line of the pipe. The temperature averaged over time
at each point of the flow is considered to depend on these
coordinates T(x, r) and is subject to a linear stationary
equation of heat conductivity with a convective
component (heat transfer) (Lee et al., 2013)

(1)
2 2

2 2

T T 1 T T
V + +

x r r r x

    
      

Here: -V gas flow velocity, m/sec; T is the gas
temperature, °С; parameter in Eq. 1 χ = λ/ρc, m2/s;
contains λ-the coefficient of thermal conductivity of gas,
W/(deg.m); ρ- gas density, kg/m3; c-gas heat capacity at
constant volume, J/(kg.deg).
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After dimensioning x = RX (R-the radius of the pipe)
and scaling the coordinates  that is changingR-r RY 

the variables  as well as introducing a(x,r) (X,Y)

dimensionless parameter ε = χ/VR Eq. 1 takes the form:

(2)
2 2

2 2

T T T T
- +

X Y Y X1-Y

    
 

   

It is believed that g = χ/VR<<1 but for field plumes,
the order of this value is 10G5, then the last two terms in
the right part of Eq. 2 can be neglected in comparison
with the first (Paranuk, 2012).

Indeed, when estimating orders of magnitude, the
following conditionally is assumed: the average gas
temperature over a cross section of 20°C; the wall
temperature is 10°C and it is assumed that at a distance of
1 cm from the wall the temperature is equal to the average
temperature across the section.

The change in temperature ΔT = 10°С corresponds to a
change in radius Δr = R-r = 1 cm. Taking R = 10 cm, the
following estimates of orders of magnitude are made:

 respectively ΔY.Y/10.3 then
3

R-r 0,1
Y 30,

3, 1 10R   


MT/MY.ΔT/ΔY.10/3.3, 3 the order of the second term on
the right-hand side of Eq. 2 is estimated as

3

3

T 3 10
3,3 0,01.

Y 1-30 3,1 101-Y





  
  

  

Thus, the error in dropping the summand 
T

Y1-Y

 


in Eq. 2, considering the other terms of the order of unity,
is about 1%. 

Therefore, to simulate a change in the temperature of
a gas T(X, Y) at X, Y>0 in a thermal boundary layer, a
one-dimensional heat conduction equation is adopted:
MT/MX = M2T/MY2 under boundary conditions:

(3)0T(X, 0) T ; T(0,Y) T 

Here, T0-the temperature of the inner wall of the pipe
and T*-the temperature of the gas in the core of the flow
(away from the wall), respectively, it is assumed that 
T*>T0. The solution of problem (Eq. 3), in particular,
gives the following result (see the explanation given at the
end of the main text of the article), here y Y : 

(4)
* 0

y 0

T -TT

y X




 

After the transition in Eq. 4 to physically dimensional
quantities, we get:

(5)* 0
r R

T V
-(T -T )

r x




 

In Eq. 4 and 5, the temperatures T0 and T* were
constant (when solving the problem (Eq. 3)) and below
they will be  considered  as  changing  along  the  pipeline
-T0(x) and T(x) = T*, in fact, this means that a change in
these temperatures within the error of the mathematical
model occurs in a segment along the pipeline with a
length much greater than the characteristic thickness of
the thermal boundary layer R .

To write the equations of a mathematical model of
the heat exchange of a gas flow with the environment is
indicated: through q(t) specific (along the length of the
pipeline) heat content of a single control “volume” of gas
(presumably moving with speed V), internal diameter of
the pipe D = 2R; through T(x) = T*-gas temperature in the
flow core, depending only on the coordinate along the
pipeline. The temperature T+ on the outer wall of the pipe
is considered to be constant (the wall includes thermal
insulation), for field plumes it is the temperature of the
surrounding soil, then, on the one hand, the heat transfer
equation from gas to the wall is written (Bunyakin et al., 
2012):

(6)0
r R

dq dq T V
V D D(T -T)

dt dx r x

 
    

 

On the other hand, the equation of heat transfer
through the wall and thermal insulation to the external
environment:

(7)
2

0

dT D dq
V c D (T -T )

dx 4 dt


    

Here, Λ is the coefficient of heat transfer from gas to
the wall, W/(degm2). The value of this coefficient can be
determined by setting the temperature in the inlet section
of the pipe, finding the temperature in another section
(downstream) and then selecting (variation) Λ can ensure
the proximity of the last temperature to its measured value
within the specified error. This is done for one of the
modes, then Λ is considered constant.

In the further derivation of the final analytical
expression, the temperature of the outer wall is considered
to be independent of the gas temperature T+ (constant) and
the temperature of the inner wall T0(x)-dependent. The 
temperature  of  the  inner  wall  is  expressed  from Eq. 7:

(8)0

DcV dT
T T -

4 dx






further by substituting this temperature into Eq. 6 and
taking into account the form of the left part Eq. 7, we
obtain:

(9)
2D dT DcV dT V

cV D T -T-
4 dx 4 dx x

         
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Hence, the derivative of the temperature in the core of the
flow is expressed as:

(10)
T -TdT 4 V

dx cVD x V
+

x

 

   


 

The differential Eq. 8, taking into account χ = λ/ρc can be
rewritten as follows:

(11)
T -TdT 4

dx D V x V

x




 
 

 

after that, the variables in it are separated:

(12)

2

1

Т L

Т 0

dT 4 dx

T -T D V V
x +




 
 

 

by introducing coefficients  and
V 8

;
D V

 
   

  

integrating Eq. 9:

2

1

Т L

Т 0

dT x
d x

T -T x +

 
 

the result is the following analytical expression:

(13)1

2

T -T L+
ln L- ln

T -T




 
     

The identical transformation of the latter leads to the
equation:

(14)   2 1

L+
T T + T -T exp - L



 

 
    

which can describe not only the heat sink from the
pipeline to the outside but also the reverse process (heat
supply to the gas) in this case T1(0) and T2(L).

Dependence  (Eq.  13)  is  an  alternative  to  the 
well-known (effectively used for both field pipelines and
wellbores) Shukhov’s formula: also   2 1T T + T -T exp - L  

has the property of exponential tendency (at L64) the gas
temperature to the temperature of the surrounding
medium wall, however, (Eq. 13) looks more complicated 
it contains not one parameter “γ” but two independent
parameters “α, β”, since, it takes into account the presence
of both a turbulent convective core and a stable thermal
boundary layer.

Both parameters α, β, although, formally contain the
flow  rate  but  actually  depend  only  on  the  mass  flow
of gas Q, since, Vρ = 4Q/πD2 иχ = λ/ρc:

2 2

2

V V c 4Qc 2
cQ

D D

8 8 8 D
4

D V D с V D с 4Q сQ

   
     

        

    
    

  

The physical meaning α can be characterized as a
parameter inversely proportional to the heat transfer
through the wall it contains a multiplier 1/DΛ that
includes physical quantities that are not in the expression
for β. The latter as a parameter of “competition of heat
conduction with convective heat transfer” inside the gas
flow, that is the greater the heat transfer along the flow
(characterized by mass flow rate Q), the lower the specific
mass transfer of heat from gas to the wall (through the
thermal boundary layer), respectively slow asymptotic
tendency of the gas temperature to the wall temperature 

this is reflected in direct proportion between β and .Q


RESULTS AND DISCUSSION

The obtained Eq. 13 was used to diagnose hydrate
formation in the plumes of the field gas collection
network, the graph of the corresponding temperature
dependence in the current section of the plume on the
length L (the path passed by the gas from the beginning of
the plume) is shown in Fig. 1. The same graph shows the
dependence  of  the  hydrate  formation  temperature  on
the  pressure  according  to  the  Hammerschmidt’s
formula (Shagapov and Musakaev, 2016): Tg°C =
20.68P(MΠa)0.268-17.78.

Data on the field plume for the graphs in Fig. 1,
operating under conditions of formation of gas hydrates
were taken from (Paranuk, 2012): χ = 10G5 m2/sec; D =
0.2 m; L = 8.5 km; P1 = 12 MPa; T+ = -5°С; Q = 7.1.0.7
kgsecG1 (about 7,1 nm3/sec).

The temperature at the beginning of the plume T1 =
20.68P1

0.268-17.78 was chosen artificially, so that, the
hydrate formation condition was fulfilled already at the

entrance to it. The parameter  was calculated
8

/ V
D

   

by the gas flow velocity at the inlet to the plume

here,  the
1 0

2 6
1

4Q (T +273,16) R мV 2 сD P 10
 

   0R 8.31 J/mol.K

universal gas constant and μ = 0.018 kg/mol the molar
mass of the gas.

The parameter α . 279 was selected, so that, the
temperature at the exit of the plume was T2 = 10°C, in fact
it is the identification of the heat transfer coefficient
through  the  wall  Λ  and  finding  it in another way in the 
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Fig. 1: Temperature dependence graphs: T°C gas
temperature in the plume (according to Eq. 13))
and Tg°C hydrate formation temperature
(according to the Hammerschmidt’s formula), L
distance from the beginning of the plume to the
calculated cross section, m

field operating conditions is difficult. After that, the
temperature distribution along the plume (as a dependence
T(L) = T2) was calculated by Eq. 13 and the
corresponding graph was plotted in Fig. 1 as a solid line.
Also in Fig. 1 (dotted line) is a graph of the temperature
of hydrate formation according to the Hammerschmidt’s
formula, built for the plume  purge mode (when the outlet
pressure  is  specifically  relieved,  the  gas  velocity 
along the flow increases due to hydraulic losses,
respectively while the temperature of hydrate formation
decreases).

The pressure inside the field plume was calculated
using a nonlinear difference scheme obtained according
to the equation for hydraulic losses, taking into account
changes in density and temperature:

02

k k 1 2 5
k k 1

k k 1

R
16 Q L

p -p
p pD +T T






  


Coordinate increment along the pipeline in the
direction of flow ΔL = L/n; k = 1, ..., n, the number of
steps  to  the  current  section  of  the  plume  can  change
at n>50, almost without affecting the accuracy of the
calculation.

An explicit expression for the pressure pk+1 in this
difference scheme is obtained by solving a square
equation  for  the  temperature  values  Tk,  Tk+1  found  in
Eq. 10:

  
2

0
k k 1 k 1 k k k 1 k k 1 k2 5

16 Q R L
p -p p T +p T T T S

D   

 
 

 

The root is selected from the natural condition of positive
pressure:

 2k k
2k 1 k k 1 k k 1 k k 1
kk

p Sp T -T + T -T +4T T -
p2T   

        

For the example of calculation, a situation was
selected that corresponded to a plume substantially filled
with hydrates with a large hydraulic resistance λ = 1 the
purge mode was modeled. From the graphs in Fig. 1 it can
be seen that due to a significant pressure drop at the end
of the plume, the temperature Tg drops and the hydrate
formation condition is violated hydrates decompose.

Explanation of Eq. 4: The solution of the equation
MT/MX = M2T/MY2, singular under conditions T(X, 0) = T0;
T(0, Y) = T* is sought by the Fourier sine transform
method in the form that satisfies the equation and the first
condition:

   2
0

0

T(X,Y) T + exp - X sin Y d


     

The function n is from the second condition

 the order of integration is 0 *

0

T(0,Y) T sin Y d T


      
rearranged:

 

 

* 0

0 0 0

* 0

0

(T -T ) sin Y dY sin Ysin YdY d ;

2
(T -T ) sin Y dY

  



 
        

 

   


  



A representation of the one-dimensional Dirac delta

function is used,  which in turn 
0

2
sin Ysin Y dY -



     
 

is justified by the following calculation (it is believed that
0<σ<2η the order of integration is rearranged):

    

   

   

0 -

0 0

0 0

1
cos - Y-cos Y d dY

2

sin Y sin Y1 sin Y
dY dY-

2 Y Y Y

sin 2 Y sin 2 - Y1
dY- dY

2 Y Y 2



 

 



 

 
        

 

       
   

 

      
  

 

 

 

 

Since,  it is the Dirichlet integral. The
0

2 sin x
dx sign

x

 
 

 
solution of the heat equation under these conditions is
expressed through the function:
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 

   

 

      

* 0

0

2* 0
0

0 0

2* 0
0

0 0

2* 0
0

0 0

2
(T -T ) sin d

2(T -T )
T X,Y T sin d exp - X sin Y d

2(T -T )
T exp - X sin sin Y d d

T -T
T exp - X cos -Y -cos Y d d



 

 

 

    


 
          

 
           

 
             



 

 

 

The table integral is used, 

2
2 2

2
0

b
exp(-a x )cosbx dx exp - ; a 0

2a 4a

  
  

 


The desired solution (superposition of two
fundamental solutions of the heat equation with a shift of
one relative to the other) has the following form:

 
2 2

* 0
0

0

2 2
* 0

0

2
* 0

T -T ( -Y) ( Y)
T X,Y T exp - -exp - d

4X 4X2 X

T -TT ( -Y) ( Y)
- exp - exp -

Y 4X 4X2 X

T -T Y
exp -

4XX







      
            

       
             

 
 

  



After the transition from a scaled variable Y to a
dimensionless one  we obtain an equationy Y 

 that required explanation, i.e., Eq. 4.
* 0

y 0

T -TT

y X




 

CONCLUSION

The obtained dependence (Eq. 13) for the
temperature along the field plume, on the one hand has an
analytical representation, on the other takes into account
the temperature distribution across the flow in the
asymptotic approximation of the thermal boundary layer. 
The dependence (Eq. 13) can be used not only for field
gas pipelines, but also to calculate the characteristics of
tubular heat exchangers it provides a fairly universal
method for finding the temperature change between the
inlet and outlet of one of the coils, provided that on the
other this difference is set and both of them are
surrounded on all sides by a receiving or giving off heat
environment (with temperature T+) this is an analogue of
the soil temperature in accordance with the above. 

The versatility consists in the fact that in order to
identify the parameters included in Eq. 13, it is enough to
select α and β only for one temperature mode of operation
of the heat exchanger (for each of coils). The temperature

T+ is found from Eq. 13 for one of the coils and the
conditionally unknown temperature difference between
the input and output of the other coil is from a similar
formula for the latter.

The  reverse  nature  of  the  change  in  the
parameters  α   and  β  when  the  flow  rate  changes 
leads to the fact that the dimensionless parameter

 inversely proportional   to   the   Nusselt 
8 8

D Nu


  

  

number  (Cuckovic-Dzodzo et al., 1999) does not depend
on the flow rate. According to information from the
literature, the dependence with such properties is new and
the presence of this parameter in the exponent of the
analytical expression (Eq. 13) is a distinctive feature.

REFERENCES

Bondarev, E., K. Argunova and I. Rozhin, 2008.
Prediction of hydrate plugs in gas wells in
permafrost. Proceedings of the 6th International
Conference on Gas Hydrates, July 6-10, 2008,
Vancouver, British Columbia, Canada, pp: 1-5.

Buchinskii, S.V., 2009. [Control of thermal regimes of
hydrate formation taking into account design features
of field pipelines]. Ph.D Thesis, Tyumen State
University, Tyumen, Russia. (In Russian)

Bunyakin, A.V., A.V. Purihov and A.V. Polyakov, 2012.
[Optimization of methanol injection system based on
the calculation of temperature and pressure
distributions in the gas collection network of wells
(In Russian)]. Oil. Gas. Innovations, 5: 31-34.

Buts, V.V., 2010. [Mathematical model of hydrate
formation during natural gas flow in pipelines (In
Russian)]. Proc. Kabardino Balkarian Sci. Center
Russ. Acad. Sci., 36: 70-79.

Cuckovic-Dzodzo, D.M., M.B. Dzodzo and M.D.
Pavlovic, 1999. Laminar natural convection in a fully
partitioned enclosure containing fluid with nonlinear
thermophysical properties. Intl. J. Heat Fluid Flow,
20: 614-623.

Lee, J., S.Y. Jung, H.J. Sung and T.A. Zaki, 2013. Effect
of wall heating on turbulent boundary layers with
temperature-dependent viscosity. J. Fluid Mech.,
726: 196-225.

Paranuk, A.A., 2012. [Indirect control of the gas
collection network (In Russian)]. Oil Gas Bus., 10:
36-40.

Shagapov, V.S.H. and N.G. Musakaev, 2016. [Dynamics
of Hydrate Formation and Decomposition in Gas
Production, Transportation and Storage Systems].
Nauka Publisher, Russia, (In Russian).

Xu, F., J.C. Patterson and C. Lei, 2009. Heat transfer
through coupled thermal boundary layers induced by
a suddenly generated temperature difference. Intl. J.
Heat Mass Transfer, 52: 4966-4975.

1639


