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INTRODUCTION

Let I be a finite set and     = n, a cell is the element ofI
I and it denoted by i0I. i = i1,..., im, i is often multi-index.
A non-negative integer xi0N = {1, 2,...} denoted a
frequency of the cell i. A contingency table is a set of
frequencies and stated as x = {xi}i0I with an suitable
arrangement  of  the  cell, considered a contingency table
x = {xi}i0I0N as  a  n-dimansional  column   vector   of
non-negative integers. The contingency table can be
treated as a function from I to N defined as i6xi. Denoted 
    be  the  set  of  integer  numbers,   also    denoted   the 
                            as fixed vectors consisting of integers. n

ja , j 1,  ,  v  
A v-dimantional column vector                          as tj =

v
1 vt = (t , …, )'t Z

aNjx, j = 1, ..., v. Here,  denotes a transpose   of   the  
matrix or vector. Also, define v×p matrix A with its j-row
being aNj given by:

'
1

'
v

a

A = M

a

 
 
 
  

And if t = Ax is a v-dimensional column vector, we define
the set,                                                   where  denoted ù n n vT : A , A      t t x x  
is a set of natural numbers. The set of x's for t, AG1 [t] =
{x0ùn: Ax = t} (t-fibers) is  treat  for  result similar tests.
A set of t-fibers deigns a taking apart of ùn. An important
noting is that t-fiber depend on given out of its kernel ker
(A). In fact, defined x1-x2:x1-x2 0 ker (A). With oneself
kernel for different A's, the set of t-fibersare the same
(Aoki and Takemura, 2003a, b).

Diaconis and Sturmfels publication in 1998 found a
new path in the rapid-advancing field of computational
algebraic statistics (Diaconis et al., 1998; Russell, 2001).
In  2000,  M.  Dyer and C. Greenhill, found a 
polynomial-time compute and sampling of contingency
tables (Diaconis and Sturmfels, 1998). Dobra 2003
showed that the only moves have to be inclusive in a

Markov basis that connects all contingency tables with
fixed   marginals   (Dobra,  2003).  Dobra  and Sullivant
(2002), described an algorithm for generate a Markov
basis of multi-way tables that  links  all  tables  with  fixed
marginal totals (Aoki and Takemura, 2003) proved that
there exist a uniqe minimal basis for 3×3×K contingency
tables consisting of four types of indispensable moves
(Sullivant, 2005) and in the same year S. Aoki and A.
Takemura presented a list of moves of 3×4×K and 4×4×K
contingency tables with fixed  dimensional  marginals  
Aoki   and  Takemura (2003a, b), also Takemura and
Aoki (2003) given some description of a minimal Markov
basis for connected Markov chain and given a sufficient
and necessary condition for uniqueness of a minimal
Markov basis (Takemura and Aoki, 2004). Takemura and
Aoki (2005) studied the Markov basis for sampling from
discret sample space which is equipped with som convent
metric and they started from two state in the sample
space.

In this study, we give a new algorithm to find the
Markov basis and toric ideals for (25n3-69n2+44n)×3×n
contingency tables with it have a fixed dimensional
marginals.

Some basic concepts: In this section, we review some
basic definitions and notations of contingency tables,
moves, Markov basis and toric ideals that, we need in our
work.

Definition 1: Let                  be a linear transformation,n dA : Z Z
the Toric ideal IA is the ideal <Pu-Pv:u, v0ùn, A (u) = A
(v)>fK  [P1, ..., P2]  where  Pu  =  P1

u1P2
u2 ... Pp

up 
(Sullivant et al., 2012)).

Definition 2: A move is a n-dimensional vector of integer
numbers                        and   if  it   is  in  the kernel  of  An

i i Iz = {z }   
(i.e., Az = 0) (Aoki and Takemura, 2003a, b).
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Definition  3:  Let  BdMA  be  the  set  of  moves and let
x1, x20AG1 [t]. Say that x2 accessible from x1 by B if there
exists a moves z1,..., zs0B and εs0{1, -1}, s = 1, ..., S such
that                        (Takemura and Aoki, 2004).

S

2 1 s s 
s 1

x x ε z


 

 
S

1
1 s s 

s 1

x ε z A   for 1 s S



    t

Now, we give some concepts about graph theory that
we use later.

Definition 4: Let G = (V, E) be  A graph then it consists
of two sets:

C V(G), the vertices setof a graph G, predominantly
denoted by V which is a nonempty set of elements
and

C E(G), the edges set of a graph G, predominantly
denoted by E such that every edge e in the edges set
is  assigned  of  vertices  [u, v]  (Clark and Holton,
1995)

Definition 5: A connected graph G = (V, E) is a graph
where every pair of distinct vertices u, v0V (G) the graph
G has a u, v-path. Otherwise, we say the graph is
disconnected (Agnarsson and Greenlaw, 2007).

Definition  6:  A  graph  G  is bipartite graph if there are
X, YfV (G) meeting the following conditions:
(Agnarsson and Greenlaw, 2007):

C V (G) = XUY
C X1Y = φ
C G [X] and G [Y]

Are both null graphs where G [X] and G [Y] are sub
graph  of  the  graph  G  induced  by  the  set  of  vertices
X, YfV (G), respectively.

Theorem 1: For a graph G is bipartite if and only if every
cycle in the graph has an even length (Agnarsson and
Greenlaw, 2007).

Definition 7:   Let                    a   linear   transformationn vA :  
          and AG1 [t] be the set of t-fibers and let Bdkerz (A),vt

then  we  define  AG1 [t]B  be  the graph with vertex set
AG1  [t]  and u – –v  an  edge if and only if u-v0±B
(Sullivant et al., 2012).

Definition 8: Let AG1 [t] = {x0ùn:Ax = t}. A set of a
finite moves B is called a Markov basis if AG1 [t]
constitutes  one  B  equivalence  class  for  all t
(Takemura and Aoki, 2004).

Definition 9: If Bfkerz (A) is a nonempty set such that
AG1 [t]B is a connected for all t, then B is Markov basis for
A (Sullivant et al., 2012).

Definition  10:  Let  BdMA  be  the set of moves and let
x1, x20AG1 [t]. Say that x1 accessible from x2 by B if there
exists  sequence  of  a  moves z1,..., z20B and εm0 {-1, 1},
m = 1, ..., D such that  (Takemura and Aoki, 2004).

D

1 2 m m
m 1

ε z


 x x

 
h

1
1 m m 

m 1

ε z A   for1 h D



    x t

Theorem 2: A collection of binomials {pz+-pz-:z0B}dIA

is generating set of toric ideal IA if and only if ±B is a
Markov basis for A (Diaconis and Sturmfels, 1998).

Genomics and phylogenetics (Aoki and Takemura,
2008): Deoxyribonucleic Acidulous (DNA) molecules are
noticeiota encoding the heritable blueprint used in the
further and working of all familiar living and many
viruses. Forever with proteins and RNA, DNA is one of
the three essential macromolecules that are fundamental
for all known life forms. Genetic indication is
cryptographic as a sequence of nucleotides (cytosine,
guanine, thymine and adenine) using the letters C, G, T,
A and most DNA molecules are double-cutspiral,
consisting of two polymers of nucleotides, molecules with
fundamental made of alternate sugars and phosphate
groups  with  the  nucleobases  (C,  G,  T,  A)  linked  to
the sugars. DNA is suited for biological input storage
(Fig. 1).

Main results: Let n be a natural number and let
xj0AG1[t], j = 1, ..., k be  the representative elements of
the set of 3×n contingency tables and B = {z1, z2, ..., zk}
such that each zm, m = 1, 2, ..., k is a matrix of dimension
3×n either has two non-zero columns and the other
columns are zero denoted by 2zm or it has treenon-zero
columns and the other columns  are zero denoted by 3zm,
like:

1 1 0 2 2 0 1 1 0

1 1 0 , 0 0 0 , 1 0 1

0 0 0 2 2 0 2 1 1

       
           
           

     

Also, we write the elements of B as one dimensional
column vectoras follows:

zm = (z1, ..., z3n)N m = 1, ..., k and zs = 0, 1-1, 2 or -2,
s = 1, 2, ..., 3n such that. If s = 1, 2, ..., n then:
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Fig. 1: Four DNA bases shown with complementary
bases paired

n
i 1s+n s+2n i
i s

n
i 1s+n s+2n i
i s

s s+n s+2n

1                                  if z + z  = -1 and z = -1 

 2                                  if z + z  = -2 and z = - 2 

z =  0                                 if z + z  = 0 and z










n
i 1 i
i s

n
i 1s+n s+2n i
i s

n
i 1s+n s+2n i
i s

= 0  

-1                                 if z + z  =  1  and z = 1

-2                                 if z + z  = 2  and z = 2










 
 
 
 
 
 
 
 
 
 
 
 
 






(1)

If s = n+1, n+2, ..., 2n then:

(2)

2n
i n 1s n s n i
i s

2n
i n 1s n s n i
i s

2n
i n 1s s-n s+n i
i s

1                        if  z z  1 and z 1 

2                     if  z z  2 and z 2 

z 0 if  z + z  = 0  and z 0

1       

  


  


 


    

    

 







                              

2n
i n 1s n s n i
i s

2n
i n 1s n s n i
i s

                 if z z  1   and z 1

2                        if z z   2 and z 2

  


  


 
 
 
 
 
 
 
 
    
 
    

 





If s = 2n+1, 2n+2, ..., 3n, then:

3n
i = 2n+1s n s 2n i
i s

3n
i = 2n+1s n s 2n i
i s

i = 2s s-n s-2n i

1                           if z z  1  and z 1 

 2                          if z z  2  and z 2

z 0 if z + z  = 0  and z 0

 


 


    

   

 




                                 

3n
n+1

i s

3n
i = 2n+1s n s 2n i
i s

3n
i = 2n+1s n s 2n i
i s

1                           if z z   1  and z 1

2                          if z z   2  and z 2



 


 


 
 
 
 
 
 
 
 
     
 
    
 







 

(3)

Theorem 3: The number of elements in B equal to
25n3-66n2+41n.

Proof: Since, there are three rows and n columns in 2zm,
such that it has two columns (1, -1, 0)', (-1, 1, 0)' or (2, -2,
0)', (-2, 2, 0)' or (1, 0, -1)', (-1, 0, 1)' or (2, 0, -2)', (-2, 0,
2)' or (0, 1, -1)', (0, -1, 1)' or (0, 1, -1)', (0, -2, 2)' or (2, -1,
-1)', (-2, 1, 1)' or (-1, 2, -1)', (1, -2, 1)' or (-1, -1, 2)', (1, 1,
-2)')  and the  other  columns  are zero, then the number 
of  elements 2zm in B is         29× n ! / n - 2 ! = 9n n -1 = 9n - 9n

but 3zm has three columns (2, -2, 0)', (-1, 1, 0)', (-1 ,1, 0)'
or (-2, 2, 0)', (1, -1, 0)', (1, -1, 0)' or (2, 0, -2)', (-1,  0,  1)', 
(-1, 0, 1)' or (-2, 0, 2)', (1, 0, -1)', (1, 0, -1)' or (0, 2, -2)',
(0, -1, 1)', (0, -1, 1)' or (0, -2, 2)', (0, 1, -1)', (0, 1, -1)' or
(2, -2, 0)', (0, 2, -2)', (2, 0, -2)' or (-2, 2, 0)', (0, - 2, 2)', (-2,
0, 2)' or (2, -1, -1)' and (-1, 2, -1)', (-1, -1, 2)' or (-1, 1, 0)',
(-1, 0, 1)' or (-2, 2, 0)', (0, -1, 1)' or (-2, 0, 2)', (0, 1, -1)' or
(-2, 1, 1)' and (1, -2, 1)', (1, 1, -2)' or (1, -1, 0)', (1, 0, -1)'
or (2, 0, - 2)', (0, -1, 1)' or (2, 0, -2)', (0, -1, 1)' or (-1, 2,
-1)' and (0, -1, 1)', (1, -1, 0)' or (2, -2, 0)', (-1, 0, 1)' or (0,
-2, 2)', (-1, 0, 1)' or (1, -2, 1)' and (0, 1, -1)', (-1, 1, 0)' or
(-2, 2, 0)', (1, 0, -1)' or (0, 2, -2)', (1, 0, -1)' or (-1, -1, 2)'
and (0, 1, -1)', (1, 0, -1)' or (2, 0, -2)', (-1, 1, 0)' or (0, 2,
-2)', (1, -1, 0)' or (1, 1, -2)' and (0, 1, -1)', (1, 0, -1)' or (0,
-2, 2)', (-1, 1, 0)' or (-2, 0, 2)', (1, -1, 0)' and the other
columns are zero, then the number of elements 3zm in B
is:

 
 

 
    

   3 2

n ! n !
6 22 3n n 1 n 2

2 n 3 ! n 3 !

22n n 1 n 2 25n 75n 50n

     
 

     

are an element in B for all m = 1, 2, …, k, since, each
element in B is either 2zm or 3zm then the numbers of
elements in B is:

9n2-9n+25n3-75n2+50n = 25n3-66n2+41n ~

Now,    we    will   show   all   elements   in   B  are
moves.

Remark 1: Given a contingency table, the entry of the 
matrix A in the column indexed by x = {x1, x2, ..., xn} and
row:

n 2n 3n

i i i 1 n+1 2n+1 2i 1 i n 1 i 2n 1

n+2 2n+2 n 2n 3n

x , x , x x + x x

+x + x  ,…,  x + x + x

,
    

 
 
 
 

   x

will be equal to one if xi a pears in the                and it will  n

ii 1
x


zero otherwise. Then:
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(n 3) 3n

1 1 1 1   0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1

1 0 0  0 1 0 0 0 1 0 0 0

0 1 0  0 0 1 0 0 0 1 0 0

         

0 0 0 1 0 0 0 1 0 0 0 1

A

 

 
 
 
 
 
 
 
 
 
 
 
 
 
  



 

  

  

  

  

              

  

Theorem 4: B = {z1, ..., z (25n
3

-66n
2

+41n)} is a set of moves.

Proof: Let zm0B. To show zm is a move.
By remark 3:

(n+3)×3n

1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1

1 0 0 0 1 0 0 0 1 0 0 0

A 0 1 0 0 0 1 0 0 0 1 0 0

0 0 0 1 0 0 0 1 0 0 0 1

 
 
 
 
 
 
   
 
 
 
 
 
  

 

  

  

  

  

              

  

  

 

         

         

               

      

We must show that:

(n+3)×3n

1

2

3

4

3n

1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1

1 0 0 0 1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0 0 1 0 0

0 0 0 1 0 0 0 1 0 0 0 1

z

z

z

z

M

z

 
 
 
 
 
 
 
 
 
 
 
 
 
  






 

  

  

  

  

              

  

  

 

         

         

               

      

(n+3)×13n×1

0

0

0

0

0

  
  

   
   

   
   
   
   
    



From 1, 2 and 3 we get:

If  3n 3n

1j j jj 1 j 1
i 1 a z z 0

 
    

If  3n 2n

2 j j jj 1 j n 1
i 2 a z z 0

  
    

If  3n 3n

3 j j jj 1 j 2n 1
i 3 a z z 0

  
    

If 3n

ij j j n j 2n jj 1
i 4, ..., n 3 a z z z z 0, i, j 
        

Then Azm is equal to:

(n+3)×3n

1

2

3

4

n

1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1

1 0 0 0 1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0 0 1 0 0

0 0 0 1 0 0 0 1 0 0 0 1

z

z

z

z

M

z

 
 
 
 
 
 
 
 
 
 
 
 
 
  







 

  

  

  

  

              

  

  

 

         

         

               

      

(n+3)×13n×1

0

0

0

0

0

  
  
  

   
   
   
   
   
    





Implies  that,  BdkerA.  Then  B  is  a set of moves
(by definition 3).G

Remark 2: Now,   we   find   the   elements   xi0AG1   [t],
i = 1, ..., (25n3-66n2+41n)  by  using  the  elements  of  the
set = {z1, ..., z(25n

3
-66n

2
+41n)} , Let zm be an element of B

such that zm = xm-xm-1, m = 1, 2, ..., (25n3-66n2+41n)-1 and
z(25n

3
-66n

2
+41n) = x0-x(25n

3
-69n

2
+44n)-1 where xi0AG1 [t], i = 0, 1,

..., (25n3-66n2+41n)-1.

Corollary 1: The set B of a moves in theorem 4 is a
Markov basis.

Proof: From definition 2, for all xi, xj0AG1, then
xi-xj]xi-xj0ker  (A)  Let  t  =  Ax   for   same   t0Nn, let xi,
xj0AG1[t]. By Remark 4, we get:

i i+1 i+1

i+1 i+2 i+2

j-1 j j

x +z  = x

x +z  = x

x +z  = x

Implies that:

j

i k j
k i 1 

 x z x

 andj

j i kk i 1
x - x = z

 
 

zk0Ker (A)

For all zk0B

   
j

1
k j i i j 

k i 1

Ker A   Ker A  for all ,  A [ ]

 

      z x x x x t

Yxi-xj for all xi, xj0AG1[t]

YAG1[t] constitutes one B equivalence class for all t.
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x ... x -20 2 4 25  -69n +44n-4 25n -69n  +44nx x x n

x ... x -11 3 5 25  -66n +41n-3 25n -66n +41nx x x n3 2 3 2

3 2 3 2YBy definition 8, the set B is a Markov basis. Now,
we will find  thetoric  ideals that corresponding Markov
basis for (25n3-66n2+41n)×3×n contingency tables.

Corollary  2:  Let  B  is  a  Markov  basis  for  A,  the
toric ideal  IA for (25n3-66n2+41n)×3×n contingency
tables is: IA = <Pi+lPj+r-Pj+lPi+r, Pi+l

2Pj+rPj+s-Pj+l
2Pi+rPi+s,

Pi+l
2Pj+r Pk+r-Pi+r

2Pj+lPk+l, Pi+l
2Pj+r

2Pk+s-Pj+l
2Pi+rPi+sPk+r, Pi+l

2Pj+r
2

Pk+s
2-Pi+r

2Pj+s
2Pk+l

2, Pi+l
2Pj+r

2Pk+s
2-Pi+sPi+rPj+sPj+lPk+rPk+l, Pi+l

2

Pj+rPk+s-Pi+rPi+sPj+lPk+l: i, j, k = 1, 2, …, n and l, s, r = 0, n,
2n, such that i…j…k and l…s…r>dC [P1, P2, …, P3n].

Proof: Since, B is a Markov basis for A, by theorem 2 
the set of binomials {pz+-pz-:z0B} is a generating of  toric
ideal IA and since, zm0B, m = 1, 2, ..., k is a matrix of
dimension 3×n and either it has two columns: (1, -1, 0)',
(-1, 1, 0)' or (2, -2, 0)', (-2, 2, 0)' or (1, 0, -1)', (-1, 0, 1)' or
(2, 0, -2)', (-2, 0, 2)' or (0, 1, -1)', (0, -1, 1)' or (0, 1, -1)',
(0, -2, 2)' or (2, -1, -1)', (-2, 1, 1)' or (-1, 2, -1)', (1, -2, 1)'
or (-1, -1, 2)', (1, 1, -2)' and the other columns  are zero,
or it has three columns: (2, -2, 0)', (-1, 1, 0)', (-1, 1, 0)' or
(-2, 2, 0)', (1, -1, 0)', (1, -1, 0)' or (2, 0, -2)', (-1, 0, 1)', (-1,
0, 1)' or (-2, 0, 2)', (1, 0, -1)', (1, 0, -1)' or (0, 2, -2)', (0, -1,
1)', (0, -1, 1)' or (0, -2, 2)', (0, 1, -1)', (0, 1, -1)' or  (2, -2,
0)', (0, 2, -2)', (2, 0, -2)' or (-2, 2, 0)', (0,- 2, 2)', (-2, 0, 2)'
or (2, -1, -1)' and (-1, 2, -1)', (-1, -1, 2)' or (-1, 1, 0)', (-1,
0, 1)' or (-2, 2, 0)', (0, -1, 1)' or (-2, 0, 2)', (0, 1, -1)' or (-2,
1, 1)' and (1, -2, 1)', (1, 1, -2)' or (1, -1, 0)', (1, 0, -1)' or
(2, 0, - 2)', (0, -1, 1)' or (2, 0, -2)', (0, -1, 1)' or (-1, 2, -1)'
and (0, -1, 1)', (1, -1, 0)' or (2, -2, 0)', (-1, 0, 1)' or (0, -2,
2)', (-1, 0, 1)' or (1, -2, 1)' and (0, 1, -1)', (-1, 1, 0)' or (-2,
2, 0)', (1, 0, -1)' or (0, 2, -2)', (1, 0, -1)' or (-1, -1, 2)' and
(0, 1, -1)', (1, 0, -1)' or (2, 0, -2)', (-1, 1, 0)' or (0, 2, -2)',
(1, -1, 0)' or (1, 1, -2)' and (0, 1, -1)', (1, 0, -1)' or (0, -2,
2)', (-1, 1, 0)' or (-2, 0, 2)', (1, -1, 0)' and the other
columns  are zero. Implies that the toric ideal is the ideal:
IA = <Pi+lPj+r-Pj+lPi+r, Pi+l

2Pj+rPj+s-Pj+l
2Pi+rPi+s, Pi+l

2Pj+r

Pk+r-Pi+r
2Pj+lPk+l, Pi+l

2Pj+r
2Pk+s-Pj+l

2Pi+rPi+sPk+r, Pi+l
2Pj+r

2

Pk+s
2-Pi+r

2Pj+s
2Pk+l

2, Pi+l
2Pj+r

2Pk+s
2-Pi+sPi+rPj+sPj+lPk+rPk+l, Pi+l

2

Pj+rPk+s-Pi+rPi+sPj+lPk+l: i, j, k = 1, 2, …, n and l, s, r = 0, n,
2n, such that, i…j…k  and l…s…r>dC [P1, P2, …, P3n].

Example 1: For n = 2, there are 18 moves in a Markov
basis according to theorem 3 for 3×2 contingency table,
then:

1 1 1 1 0 0 1 1 1 1 0 0

1 1 , 0 0 , 1 1 , 1 1 , 0 0 , 1 1 ,

0 0 1 1 1 1 0 0 1 1 1 1

2 2 2 2 0 0 2 2 2 2

2 2 , 0 0 , 2 2 , 2 2 , 0 0

0 0 2 2 2 2 0 0 2 2

              
                         
                         

          
                 
                

B

0 0

, 2 2 ,

2 2

2 2 1 1 1 1 2 2 1 1 1 1

1 1 , 2 2 , 1 1 , 1 1 , 2 2 , 1 1

1 1 1 1 2 2 1 1 1 1 2 2

 
 
 
 
 
    
        
        
                                                                           

Fig. 2: Graph G = (R, W, B) = AG1[t]B where the 
contingency tables explicated as vertices and
connecting moves are explicated as edges of a
graph, R = {x0, x2, …, x(25n

3
-66n

2
+41n)-2} and W =

{x1, x3, …, x(25n
3

-66n
2

+41n-1)}

By  corollary  2 the toric ideal of 3×2 contingency table:
IA = <Pi+lPj+r-Pj+lPi+r, Pi+l

2Pj+rPj+s-Pj+l
2Pi+rPi+s: i,  j,  =  1, 2,

…, n and l, s, r = 0, n, 2n, such that, i… j and
l…s…r>dC[P1, P2, P3, P4, P5, P6].

Remark 3: We can find the toric idea by use corollary 2
for (25n3-66n2+41n)×3×n contingency tables without find
a Markov basis.

Remark 4: Now, we constructed a connected graph by
use  the  elements  of  B.  Let  zm  be  an  element  of  B
such that zm = xm-xm-1, m = 1, 2, ..., (25n3-66n2+41n)×3×n
be an edge connected xm and xm-1, ... and z(25n3-66n

2
+41n) = 

x0-x(25n
3

-66n
2

+41n)-1 be an edge connect x0 and x(25n
3

-66n
2

+41n)-1, 
where, xi0AG1[t], i = 0, 2, …, (25n3-66n2+41n)-1. Then
we can connected all (25n3-66n2+41n)×3×n contingency
tables with fixed two dimensional marginals  by used
(25n3-66n2+41n) edges by applying moves from B to x0

one by one and go from x0 to x(25n
3

-66n
2

+41n)-1 without give
rise to negative cell frequencies on the path, also from
x(25n3-66n2+41n)-1 to x0 of this kind by forming undirected
graph as shown in Fig. 2.

Theorem 5: The graph G = (R, W, B) is a connected
bipartite graph (up to graph  isomorphism).

Proof: To prove G = (R, W, B) is a connected graph. Let:

xi, xj0AG1[t]

if, 0#i#j#25n3-66n2+41n-1, i…j, by Remark 6, there
exists a path <xi, zi+1, xi+1, zi+2, …, xj-1, zj, xj> and if
0#j#i#25n3-66n2+41n-1, i…j by Remark 6, there exists a
path <xj, zj+1, xj+1, zj+2, …, xi-1, zi, xi>, in addition, that
implies there exists a path between every pair of distinct
vertices xi, xj0AG1[t] of the graph by (definition 5), G is a
connected graph.

Now, we prove the graph G = (R, W, B) is a bipartite
graph. Let xi, xi+1, …, xj-1, xj, xj+1 = xi be a cycle in G.

Suppose   xi0R.   Then   xi+10W,    since,    the    edge
zi+1  =  xi+1-xi0B,  implies  that   xi+20R,  since,  the  edge
zi+2 = xi+2-xi+10B. Continuing in this way, we see that if k
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0
0
0
0

...

...

...
0

z1

zn+1

z2n+1

0

z2

zn+2

z2n+2

0

zn

z2n

z3n

0

x1 x2 xn

x2nxn+2xn+1

x2n+1 x2n+2 x3n

x +x +x1 n+1 2n+1 x +x +x2 n+2 2n+2 x +x +xn 2n 3n

n
xi

i = 1
2n

xi

i = n+1
3n

xi

i = 2n+1
|x| =    xi

i  I

is  odd,  then  xk0W  and  if  k  is even then xk0R.  Since,
xj+1 = xi0R, it implies that j+1 is even and thus the cycle
is   of   even   length.   By   theorem   1,   then   the   graph
G = (R, W, B) is a bipartite graph.

Corollary  3:  The  set  B  of  moves  in  theorem  4  is  a
Markov basis.

Proof: Let BfkerZ (A) be a finite set of moves. From
theorem 5 the graph AG1[t]B is  a connected graph. By
definition 9 B is a Markov basis for A.

A new module of genetic algorithm of nucleotides in
DNA Sequences: In this section, we use an algorithm to
make a new model of genetic algorithm of the pieces of
Nucleotides in these quences of aligned DNA. Now, we
will describe the model in a following steps:

Step 1: Suppose, we have DNA sequences of m taxons,
each taxon of length L like:

C Taxon1: ATCGA  ACGGTA TGTþ
C Taxon2:  AGATCAGAAC  CGATþ
                                                                
C Taxonm: GCGTAGCGTGGCAC

Then, defined a pattern i = i1, i2, ..., im to be the
sequence of characters. We will look at a single site
(column) of our sequence data. In the sequences above,
we look at the first site in the sequences and we will see
the pattern “AC ... G”. A pattern frequency xi is that i
appears in our set of sequence data and we refer to the
number of frequencies by 3n where n = 2> = 2.

Step 2: We can input the patterns frequency xi of above
sequences in 3×n:

contingency tables as follows:

where                    is the length of sequences (the samplei
i I

x x L


 
size) and:

x1 : Frequency of the first pattern
x2 : Frequency of the second pattern
xn : Frequency of the n pattern
xn+1 : Frequency of the n+1 pattern
xn+2 : Frequency of the n+2 pattern

!

x3n : Frequency of the 3n pattern

Step 3: From remark 3, A is (n+3)×3n matrix and:

1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1

1 0 0 0 1 0 0 0 1 0 0 0

A 0 1 0 0 0 1 0 0 0 1 0 0

0 0 0 1 0 0 0 1 0 0 0 1

(n+3)×3n

 
 
 
 
 
 
   
 
 
 
 
 
  

 

  

  

  

  

              

  

  

 

         

         

               

      

where, Ax = t is written as:

1

2

3

4

3n

(n+3)×3n

1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0
x

0 0 0 0 0 0 0 0 1 1 1 1
x

1 0 0 0 1 0 0 0 1 0 0 0
x

0 1 0 0 0 1 0 0 0 1 0 0
x

0 0 0 1 0 0 0 1 0 0 0 1
x

 
 
         
 
 
 
   
 
 

 

  

  

  

  

              


  

  

 

         

         

               

      

1

2

3

4

n+3

t

t

t

t

t

  
  
  
  
   

   
   
   
     



 

where the columns of the matrix A index by the elements
of the column vector x.

Step 4: Find the Markov basis by use Corollary 1,
therefore, the set is written as:

where  zs = 0, 1, 2, -1 or -2, s = 1, 2, ..., 3n as in Eq. 1, 2,
and 3.

Step 5: Find the toric ideal by use Corollary 2.

Step 6: Find (25n3-66n2+41n)×3×n contingency tables
where AG1[t]B connected for all t by use the Markov basis.

Step 7: Using the contingency tables to describe
apermutation of the pieces of nucleotides in aligned DNA
sequences to (25n3-66n2+41n)×3×n contingency tables.

Example 2: Suppose we have three sequences of
analigned DNA as followed:

C Taxon 1: CGATGCCCGATTTGGGC
C Taxon 2: AC TCGTAAC TCCCGGGT
C Taxon 3: ACA GACAACA GGGAAAC

Step 1: There are  three taxons for  above DNA sequences
with                             and  six  patterns   CA   A,  G   CC,i

i I

x x L 16


  
ATA, TC G, GGA, CTC, CA A, CA A, G CC, TTA,
TCG, TC G, TC G, GGA, GGA and GGA with 
frequencies 3, 2, 2, 4, 4 and 1, respectively where, 3n = 6.
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3 2 5

642

4 1 5

1679

5 0 5

0 6 6

4 1 5

9 7 16

4 1 5

1 5 6

4 1 5

9 7 16

4 1 5

642

3 2 5

1679

5 0 5 5 0 5

1 5 6

3 2 5

1679

3 3 6

41 5

1679

4 1 5

5 1 6

3 2 5

1679

1679

0 5 5

3 2 5

4 2 6

41 5

5 1 6

32 5

1679

41 5

3 3 6

6 0 6

32 5

1679

0 5 5

5 1 6

4 1 5

1679

41 5

5 0 5

1679

32 5

4 2 6

3 2 5

1679

4 1 5

4 2 6

1 4 5

1679

5

1

32

5 6

32 5

1679

5 0 5

2 4 6

32 5

1679

5 0 5

4 2 6

0 5 5

16791679

3 2 5

5 1 6

1 4 5

x =0 , x =1 , x =2

x =3 , x =4 , x =5

x =6 , x =7 , x =8

x =9 , x =10 , x =11

x =12 , x =13 , x =14

x =15 , x =16 , x =17

-1 1

00

1 -1

1 -1

-2 2

1 -1

1 -1

1 -1

-2 2

-22

00

-2 2

-2 2

1 -1

1 -1

1 -1

0 0

-1 1

-22

-1 1

-1 1 -22

-2 2

0 0 -2 2

0 0

2 -2

z =10 , z =11 , z =12

z =13 , z =14
, z =15

z =16 , z =17 , z =18

z =1 , z =2
, z =3

2 -2

-2 2

0 0 00

-1 1

1 -1

0 0

1 -1

-1 1

-11 0 0

2 -2-1 1

0 0 -2 2

-1 1

2 -2

-1 1

z =4 , z =5 , z =6

-1 1

00

2 -2

-2 2

2 -2

0 0

0 0

-1 1

1 -1

z =7 , z =8
, z =9

3

2

4

8

2

4
1

7

5
6
5
16

Step 2: Now, input the patterns frequency xi of above
sequences in 3×2 contingency table as follows:

Step 3: A is 5×6 matrix and:

1 1 0 0 0 0

0 0 1 1 0 0

A 0 0 0 0 1 1

1 0 1 0 1 0

0 1 0 1 0 1 5 6

and

 
 
 
 
 
 
   

Ax = t, i.e:

1

2

3

4

5

3
1 1 0 0 0 0

2
0 0 1 1 0 0

2
0 0 0 0 1 1

4
1 0 1 0 1 0

4
0 1 0 1 0 1 5 6 1 6 1

t

t5

t6

t5

t8 5 1
7 5 1

 
   
   
   
   
   
   
         

 
                          
 
  

Where, the columns of the matrix A index by the elements
of the column vector x and:

t1 = x1+x2 = 5, t2 = x3+x4 = 4, t3 = x5+x6 = 6 
t4 = x1+x3+x5 = 7, t5 = x2+x4+x6 = 8

Step 4: We find the Markov basis from Eq. 1, 2 and 3.
Then the number of moves is 25n3-66n2+41n = 18
elements in the set:

Step 5: We find the toric ideal IA = <Pi+lPj+r- Pj+lPi+r, Pi+l
2

Pj+rPj+sPj+l
2Pi+rPi+s:  I, j, = 1, 2, ..., n and l, s, r = 0, n, 2n,

such  that  i…j  and  l … s … r> = <P1P4-P2P3, P1P6-P2P5,
P3P6-P4P5,  P1

2P4P6-P2
2P3P5,  P1P4

2P5-P2P3
2P6,

P1P3P6
2-P2P4P5

2>dC [P1, P2, P3, P4, P5, P6]  and by using
corollary 2.

Step 6: The connected graph AG1[t]B = G = (R, W, B)
with  (t-fibres)  3×2   contingency  tables  as 

2n 3n
18

3




vertices of it (Fig. 3).

Where:
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x1 x3 x5 x7
x9 x11 x13 x15 x17

z18

z17

z16z15z14z13

z12

z11
z10z9

z8

z7
z6z5

z4z3z2z1

x0
x2 x4 x6 x8 x10

x12 x14 x16

Fig. 3: Graph G = (R, W, B) = AG1 [t]B where the 
contingency tables explicated as vertices and
connecting Markov basis are explicatedas edges
of a graph, R = {x0, x2, x4, x6, x8, x10, x12, x14, x16}
and W = {x1, x3, x5, x7, x9, x11, x13, x15, x17}

Step 7:  The change in the kind of DNA sequences under
the Markov basis. Be as Fig. 2, where:

The permutation of thepieces of nucleotides inaligned
DNA  sequences  under  the set of Markov basis in
example 3.

Remark 5:

C We refer to Î, Ï, Ð, Ñ, Ò and Ó in Step 7 to the
frequencies of the patterns in DNA sequences

C We refer to     in the same figure to the hidden in the
pattern frequency of DNA sequences

CONCLUSION

Dissection: In this study, we introduce a new model to
change the pieces of nucleotides in aligned DNA
sequences by using Markov basis and we shows that for
Given A and t, there exists finite BfkerZ(A) such that
AG1[t]B is constitutes one B equivalence class.
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