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A Stochastic Approach to Determine Seroconversion Time under Alertness using
Erlang Truncated Exponential Distribution
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Abstract: In the study of HIV infection and its consequences the seroconversion of infected is a vital event.
The HIV virus is commonly transmitted via. unprotected sexual activity, blood transfusions, hypodermic
needles and from mother to child .The concept of alertness is gaining the greater important now a days in view
of both prevention and delaying the process of seroconversion.
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INTRODUCTION

The spread of Human Immune deficiency Virus
(HIV) and consequent Acquired Immune Deficiency
Syndrome (AIDS) has created a pandemic situation in
many countries of the world. The HIV is a lentivirus
organism that attacks the power of immunity in the human
body. It is disheartening to note that there is no proper and
definite cure for this infection till this day all the efforts of
the scientist in inventing a medicine for this is still in
process.

One of the models of transmission of HIV from the
infected to any other person is by sexual contacts. The
transmission of HIV from the infected to the other on
successive contacts leads to the contribution of antigenic
diversity of the antigen which in turn increases the
survival of the antigens. The cumulative contribution to
the antigenic diversity of the invading antigen in
successive contacts if exceeds a particular level called
antigenic diversity threshold then the human immune
system is unable to fight against the antigens. The
determination of the intensity of antigenic of the intensity
of antigenic diversity has been studied by several
researchers. Nowak and May (1991) have studied the
antigenic diversity. Jewell and Shiboski (1990) have
discussed the infectivity of HIV. Kannan et al. (2007)
have used a mathematical model to determine the
expected time to seroconversion Stilianakis et al. (1994)
have  discussed  on  the  antigenic  diversity  threshold
model for AIDS.

In the model, it is consider that a person takes some
precautionary measures to avoid the transmission of HIV
and this is called the alertness. However, if a person fails
to adopt such preventive measure in other words if the
person is in alert then the HIV gets transmitted. So, the
model observed here is under the assumption that the
transmission  of  HIV  is  possible  only  during  the
contacts without alertness. A stochastic model for HIV

transmission under alertness under the assumption that
threshold  level  of  antigenic  diversity  is  a  random
variable which follows a gamma distribution and
exponential geometric distribution has been discussed by
Kannan et al. (2007), Kannan and Chandrasekar (2015).
The expected time to seroconversion is estimated using
transmission probability with threshold of an Erlang
truncated exponential distribution. Numerical illustration
is also providing.

MATERIALS AND METHODS

The model: In this model, a situation where a person
adopts the preventive strategy with a probability ‘p’
during a sexual contact is considered. It is logical to
assume that the transmission of HIV is possible only
during a contact in which a person is inalert. At the same
time HIV transmission is not a sure event according to
medical finding. So, it is assumed that HIV transmission
is possible during the sexual contact. Hence, one can
visualize the following possibilities:

C A person is alert with probability ‘p’ and during the
contact invasion of HIV does not take place

C A person is inalert with probability ‘q’ and
transmission occurs with probability β

C A person is inalert with probability ‘q’ and
transmission does not occurs and the probability of
this event is (1-β)

Assumptions of the model:

C Sexual contact is the only source of HIV transmission
C During any contact in which a person is unalert the

transmission of HIV is a sure event
C An individual is exposed to damage process acting

on the immune system and damage is assumed to be
linear and cumulative
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C Damages occur if a partner is unalert
C If the total damage caused exceeds a particular level

called the threshold Y which itself is a random
variable, the seroconversion occurs and person is
recognized as infected

C In any single contact a person is alert with probability
‘p’ and unalert with probability ‘q’, so that, p+q = 1

RESULTS AND DISCUSSION

It can be shown that:
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This gives the probability that a ‘k’ contact, the
increases in antigenic diversity does not cross the
antigenic diversity threshold level Y. Let Y~ Erlang
truncated exponential (λ, θ):
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We define the survival function as S (t):
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 Using Laplace Steiltjie’s transform and F0 (t) = 1 then
it can be shown that:
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The cdf of z is given by:
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The laplace transformation of F (z) is:
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Assuming that g (.)~ exp (c) then:
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At s = 0:
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Using (5.3) and assuming g (.)~exp (µ), we get:
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Since, g (.) ~exp (µ) then:
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To find the variance:
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Special  case:  When  there  is  no  alertness  then  q  =  1,
β = 1, so:
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In case of alertness:
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Therefore, µta>µt and this implies that mean time to
seroconversion is large in case of alertness, this is
inversely proportional to the probability of non-alertness
‘q’ which is an interesting result:
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When there is no alertness q = 1, β = 1 then the
variance is same as the results obtained by Kannan and
Parthasarathi (2017).

Numerical illustrations: Table 1, shows the values of
expected time to seroconversion corresponding to the
variation  in  c,  the  parameter  of  the  distribution  of
inter-arrival time when q, µ, θ, λ are kept fixed. As c
increases which means the average of inter-arrival time
become smaller, so, there is a corresponding decrease in
expected time to seroconversion and also its variance as
shown in Fig. 1.
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Table 1: Shows the values of expected time to seroconversion
C E (T) V (T)
1 17.8180 317.4817
2 8.9090 79.3704
3 5.9393 35.2757
4 4.4545 19.8426
5 3.5636 12.6993
6 2.9697 8.8189
7 2.5454 6.4792
8 2.2273 4.9607
9 1.9798 3.9195
10 1.7818 3.1748
µ = 0.2, θ = 0.2, λ = 0.5, q = 0.5, β = 0.1

Table 2: Contribution of the antigenic diversity increases
µ E (T) V (T)
0.1 0.8940 0.7993
0.2 0.8909 0.7937
0.3 0.8992 0.8086
0.4 0.9086 0.8255
0.5 0.9170 0.8410
0.6 0.9244 0.8544
0.7 0.9306 0.8661
0.8 0.9360 0.8762
0.9 0.9407 0.8849
1 0.9447 0.8925
C = 2, θ = 0.2, λ = 0.5, q = 0.5, β = 0.1

Table 3: The variation in E (T) and V (T) consequent changes in
parameter θ

θ E (T) V (T)
0.01 8.184497 66.98599
0.02 8.061465 64.98722
0.03 7.958928 63.34453
0.04 7.872897 61.98250
0.05 7.800319 60.84497
0.06 7.738821 59.88935
0.07 7.686532 59.08278
0.08 7.641961 58.39957
0.09 7.603902 57.81933
0.1 7.571374 57.32571
C = 2, µ = 0.2, λ = 0.5, q = 0.5, β = 0.1

As  the  value  of  µ  which  is  parameter  of  the
random variable Xi denoting to the contribution of the
antigenic  diversity  increases  then  it  is  seen  that
expected time to seroconversion and variance of
seroconversion  increases  as  indicated  in  Table  2  and
Fig.  2.

In Table 3 and Fig. 3 the variation in E (T) and V (T)
consequent changes in parameter θ is noted. As the
parameter of the threshold distribution θ increases the
mean time to seroconversion as well as variance time to
seroconversion are decreased.

In Table 4 as the value of the threshold parameter λ
increases then the expected time to seroconversion and
variance  of  seroconversion  are  decreases  as  shown  in
Fig. 4.

From Table 5, we observe that if the inalert
probability ‘q’ increases, the contribution of antigenic
diversity in successive contact will be more and hence,
there is a decrease in mean time to seroconversion and
also its variance as shown in Fig. 5.

Table 4: Value of the threshold parameter λ increases then the expected
time to

λ E (T) V (T)
0.1 9.7563 95.1853
0.2 9.5253 90.7316
0.3 9.3072 86.6231
0.4 9.1018 82.8422
0.5 8.9090 79.3704
0.6 8.7286 76.1888
0.7 8.5603 73.2782
0.8 8.4035 70.6195
0.9 8.2580 68.1943
1 8.1231 65.9846
C = 2, µ = 0.2, θ = 0.2, q = 0.5, β = 0.1

Table 5: Inalert probability ‘q’ increases, the contribution of antigenic
diversity in successive contact will be more

q E (T) V (T)
0.1 44.5450 1984.2610
0.2 22.2725 496.0652
0.3 14.8483 220.4734
0.4 11.1363 124.0163
0.5 8.9090 79.3704
0.6 7.4242 55.1184
0.7 6.3636 40.4951
0.8 5.5681 31.0041
0.9 4.9494 24.4970
1 4.4545 19.8426
C = 2, µ = 0.2, λ = 0.5, θ = 0.2, β = 0.1

Fig. 1: Corresponding decrease in expected time to
seroconversion and also its variance

Fig. 2: Expected time to seroconversion and variance of
seroconversion increases
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Fig. 3: Parameter of the threshold distribution θ increases
the mean time to seroconversion as well as
variance time to seroconversion

Fig. 4: Variance of seroconversion are decreases

Fig. 5: Decrease in mean time to seroconversion and also
its variance

From Table 6, we observe that if the transmission
probability  ‘β’  increases,  the  contribution  of  antigenic
diversity in successive contact will be more and hence,
there is a decrease in mean time to seroconversion and
also its variance as shown in Fig. 6.

Fig. 6: Decrease in mean time to seroconversion and also
its variance

Table 6: Transmission probability ‘β’ increases, the contribution of
antigenic diversity in successive contact will be more

β E (T) V (T)
0.1 8.9090 79.3704
0.2 4.4545 19.8426
0.3 2.9697 8.8189
0.4 2.2273 4.9607
0.5 1.7818 3.1748
0.6 1.4848 2.2047
0.7 1.2727 1.6198
0.8 1.1136 1.2402
0.9 0.9899 0.9799
1 0.8909 0.7937
C = 2, µ = 0.2 λ = 0.5, θ = 0.2, q = 0.5

CONCLUSION

In this study using the concept of alertness a
stochastic model for seroconversion time are derived
under the assumption that the threshold level of antigenic
diversity follows an Erlang truncated exponential
distribution. Numerical illustration is provided using
simulated data.

NOTATIONS

Xi : A random variable denoting the increase in the
antigenic diversity arising due to the HIV
transmitted during the ith contact X1, X2, ..., Xk

are continuous iid. random variables, with pdf g
(.) and cdf G (.)

Y : A random variable representing antigenic
diversity threshold and follows erlang truncated
exponential distribution with parameters θ and λ,
the pdf being h (.) and cdf H (.)

Ui : A  continuous  random  variable  denoting  the
inter-arrival times between successive contacts
with pdf f (.) and cdf F (.)

gk (.) : The pdf of random variable 
k

i

i 1

X



Fk (.) : The kth convolution of F (.)
T : A continuous random variable denoting the time

of seroconversion with pdf l (.) and cdf L(.)

1577



J. Eng. Applied Sci., 15 (6): 1573-1578, 2020

Vk (t) : The probability of exactly k contacts in (o, t]
l* (s) : The Laplace Stieltje’s transform of l (t)
f* (s) : The Laplace Stieltje’s transform of f (t)
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