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Abstract: Range of sensitive parameter value associated with uncertainty should be performed in the
calibration and validation process to establish more accurate watershed hydrological models. Evapotranspiration
1s one of the most dominant in a hydrological cycle other than surface runoff and subsurface processes. This
research aims at an in-depth understanding of the SWAT-CUP ability on analyzing the impact of Potential
Evapotranspiration (PET) methods on sensitive parameter and uncertainty streamflow simulations of the
Kelantan river basin. The hydrological model was developed using the SWAT with three option of PET
methods: Penman-Monteith (P-M), Priestley-Taylor (P-T) and Hargreaves (HG). The SWAT-CUP with SUFI-2
optimization algorithm and Nash-Sutcliffe as objective function were used to evaluate the model simulation
compared to the streamflow discharge from years 1985-2000 for calibration and 2001-2016 for validation
periods. The best value of NSE, R2 and PBIAS, indicated no significant difference and the model achieved very
good performance during calibration and good performance during validation. The 95PPU plot and statistics
value, p-factor yielded acceptable outcomes during calibration by bracketing of the observed streamflow data
with 82, 74 and 75% for HG, P-T and P-M, respectively. However, the p-factor was achieved only 46, 40 and
44%, respectively during the validation period. The calibration strength of the r-factor was reached with
HG (0.75, 0.67), P-T {0.92, 0.84) and P-M (0.88, 0.81) during calibration and vahdation. The uncertainty
analysis showed that P-T 1s better performer during both the calibration and validation. Overall the SWAT
Model was considered can give good performance with the built-in PET methods options.
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INTRODUCTION

Evaluation of a hydrological model performance
through parameters sensitivity test and model uncertainty
analysis is a critical measure to verify the model strength.
Regular model evaluation by using the basic statistic of
the determination coefficient (R2), Nash-Sutcliffe
Efficiency (NSE) and Percent Bias (PBIAS) was
mnsufficient to assess the fit and model correlation. In
addition, the 95PPU analysis by the value of p-factor and
r-factor should be considered to have the degree of
uncertainty and sensitivity of the optimized parameter
values for a site-specific. NSE, R2, PBIAS, p-factor and
r-factor will enhance the calibration and validation process
to have a good model. A well-calibrated model will able
to describe and simulate the hydrological processes for
any forecast situations in more precise and sufficient
accurate as of the real situation (Kannan et al., 2019,
Querner and Zanen, 2013).

Nowadays, the Soil and Water Assessment Tool
(SWAT) has been proven to be a useful hydrological

model for the watershed assessment of water quantity and
quality (Qi et al, 2009; Querner and Zanen, 2013;
Thavhana et al, 2018), sediment and nutrient transport
(Dakhlalla and Parajuli, 2018, Megersa et al., 2019),
future effect of land management (Ayivi and Jha,
2018; Zhang et al, 2017), potential climate change
impacts (Bekele et al, 2019, Zhao et al, 2019) and
valuation ecological problems (Sun et al, 2017,
Vigiak ef al, 2018). The SWAT is integrated with
Arc-GIS as an extension to have semi-distributed
and continuous long-term simulation model which
reflects various of physical processes included
portioning into sub-watersheds, hydrologic cycle
{precipitation, evaporation and transpiration, potential
evapotranspiration, infiltration, lateral flow, percolation,
recharge to aquifer, return flow, surface runoft), pesticides
and nutrient cycle (nitrogen and phosphorus) and erosion
and sedimentation (Neitsch et al., 2011).

The SWAT Model has incorporated more than
250 parameters with a set of pre-defined parameter
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value cover soils properties, surface runoff, infiltration,
percolation, evaporation and evapotranspiration. Range of
sensitive parameter value associated with uncertainty
should be performed in the calibration and validation
process to establish more accurate watershed hydrological
models. Evapotranspiration is one of the most dominant in
a hydrological cycle other than surface runoff and
subsurface processes. Potential Evapotranspiration (PET)
1s referring to the possible highest volume of evaporation
water and transpiration from the vegetated surface
under standard soil moisture and vegetation conditions
with unlimited water supply due to the prevailing
meteorological conditions. The PET in a watershed
ecosystem directly influences the hydrological cycle
and energy balance which can disturb the dynamics of soil
content storage, groundwater physical properties and
streamflow discharge (Dinpashoh et of., 2019).

The SWAT Model offer with four calculations
methods available within SWAT for PET calculation:
Penman-Monteith (P-M), Priestley-Taylor (P-T),
Hargreaves (HG) and the user defines (Neitsch et al,
2011). However, the available built-in methods estimate
varving values due to their development process
consider for a specific climatic region with a different
perspective, assumptions and input data requirements
(Alemayehu et al., 2015). The data requirements for PET
calculation is varving for each selected methods. The
Penman-Monteith method involves information of daily
solar radiation, mimimum and maximum air temperature,
relative humidity and wind speed. The Priestley-Taylor
method is an empirical approach of P-M where only needs
radiation of solar, temperature of air and relative humidity.
Relative humidity 1s required for vapor pressure
calculation in P-M and P-T methods. While the
Hargreaves method depending only on the mean,
maximum and minimum of air temperature. This method
1s desirable in the case missing data either the wind speed,
solar radiation or relative humidity (Efthimiou et al,
2013).

MATERIALS AND METHODS

Study area: The SWAT Model was applied to the
Kelantan river basin at the Guillemard Bridge discharge
station, covering an area of 12,600 km® with the lowest
elevation of 1.1 m and the highest elevation of 2,159.9m
(Fig. la). The total stretches length is 5314 km included
the main tributaries of Lebir river, Galas river and Pergau
river with the longest path is 273 km from the most
upstream. The station is located to the Northwards of
Kelantan river about 65 km to the river mouth. The area
received annual average rainfall is about 2,500 mm.
Fig. 1b shows the Guillemard Bridge Watershed (GBW)
land use which was predominated by forest at the
upstream and midstream, occupying approximately 76%,

agriculture activity (rubber, oil palm, coconut, etc.) was
23% in the middle and downstream of the catchment.
There was <1% development used for residential,
commercial and industrial.

SWAT Model setup: Guillemard Bridge Watershed
hydrological model was established using the SWAT
Model (Neitsch et al., 2011). The applications integrate
the watershed spatial data (Digital Elevation Model
(DEM), soil and land used) with daily climatic
variables data (precipitation (mm), evaporation (mm), air
temperature (°C), relative humidity, wind speed and solar
radiation) for the modeling. Historical rainfall data from
years 1980-2016 in daily time-series format were derived
from 16 stations within the GBW. While the daily
observed streamflow discharge from 1985-2016 at
Guillemard Bridge station (Fig. 1) was divided to
years 1985-2000, for calibration and 2001-2016 for
validation. The DEM 5 m resolution of Interferometric
Synthetic Aperture Radar (IFSAR) was used for
topography elevation data and classification map was
used to represent the land use data for the year
2010.

The DEM integrated with soil and land use, slope
classes options (0-15, 15-24, 24-35, 35-49 and >49%)
and threshold values of 10% for soil, 20% for land used
and slope were discretized by ArcGIS to smaller spatial
sub-units (Her et al, 2015; Megersa et al, 2019
Yacoub and Foguet, 2012). Based on these spatial
pieces of information, 29 sub-watersheds was created
with 224 Hydrological Response Units (HRU). The
HRUsre main the homogeneous and contains
combinations of soil properties, land used type, slope
features and land management in the watershed. The
elevation at the outlet of the sub-basin 2 (Gullemard
Bridge station) represents the reference low points in
the mainstream. Surface water originating from the
sub-watersheds eventually accumulate at low points to
represents as a tributary stream in each sub-watersheds
and leaves to join into the mainstream ofthe Kelantan
river (Chunn et al., 2019).

Model calibration and sensitivity analysis: We
recently conducted the parameters sensitivity analysis,
calibration, validation and uncertainty analysis of SWAT
Models by using the SWAT Calibration and Uncertainty
Programs (SWAT-CUP) (Abbaspour, 2015). We had
chosen the SUFI-2 option with objective function NSE
0.5 and selected parameters for the model sensitivity
analysis. The parameters which being considered to
have influential on streamflow discharge based on
knowledge of a catchment and those suggested in the
reference literatures (Ayivi and Jha, 2018; Bekele et al,,
2019; Ligaray et al, 2015, Maharjan et al, 2013;
Narsimlu et al., 2015, Tanet al., 2014; Thavhana et al.,
2018).
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Fig. 1{a-b): (a) Topographical view of DEM 5 m with the network of main and tributaries rivers in the Guillemard
Bridge watershed and (b) Guillemard Bridge sub-basin and land use for the year 2010
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Fig. 2(a-c): Results of local analysis dotty plot with the objective function of NSE for the streamflow most sensitive
parameters (a) 1: CANMX hru, (b) 1: CN2.mgt and (¢) 1: ALPHA BNK 1te

At the early stage, local sensitivity analysis for
29 parameters was performed to identify the governing
flow factors through the SWAT-CUP output of the dotty
plot (Narsimlu ef af., 2015). The local sensitivity analysis
or one-factor-at-a-time demonstrates the sensitiveness of
model performance with the change of a variable input
value when other parameters are kept constant as
drown in Fig. 2 and 3 (Khalid et al, 2016). Then, the
significance of the parameter sensitivity and ranking
among the selected parameter were identified for the three
PET SWAT Models based on global sensitivity analysis
(Abbaspour, 2015).

The calibration procedure starts by providing a large
range based on default parameters value as the mnitial

parameter tange. The calibration algorithms run with
varied iteratively values and narrows down the range
until the best parameter range is obtained with an
optimal agreement between observation and simulation
{(Samadi et al, 2017). In each iteration, the SUFI-2
algorithm performs Latin Hypercube sampling for
user-defined parameter ranges and creates multiple
parameter set samples.

The SWAT-CUP was run with the 22 selected
sensitive parameters for a few iterations during calibration
until the defined objective function was satisfied and each
iteration was set for 500 simulation runs. Later, the values
range for each parameter were updated and each new
ranges were smaller than the initial range. The parameter
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Fig. 3(a-c): The dotty plot for streamflow insensitive parameters (a) 1: SURLAG bsn, (b) 1: REVAPMN gw and

{c)1: GWHT gw

Table 1: The statistical evaluation criteria for monthly streamflow models performance

Statistical criteria Very good Good Satisfactory Unsatisfactory
R? RZ>0.85 0.75<R?<0.85 0.60<R?<0.75 RI<0.6

NSE NSE>0.80 0.70=NSE=0.80 0.50=NSE=0.70 NSE<0.50
PBIAS PBIAS<=5 +5<PBIAS<=10 +10<PBIAS<+15 PBIAS =415
p-factor p-factor>0.70 p-factor<0.70

r-factor r-factor<1.5 1.5 <r-factor

ranges get thinner through the iterations until the best
performing parameter range is obtained. Afterward, the
ranges of the parameters with the better performance
results were used for the validation process.

Model performance evaluation: The SWAT-CUP
compares the best simulation from the SUFI-2 with the
observed discharge and computes the statistical measures.
In this study, the model performance was evaluated
based on the Nash-Sutcliffe coefficient (INSE), coefficient
of determination (R*) and Percent BIAS (PBIAS).
Furthermore, the 95PPU indicator of p-factor and
r-factor was used to measure the degree of the model
uncertainties. The p-factor is the percentage of the
observations data are bracketed within the 95PPU and
denoted by an ideal value of 100% where all the
quantifies uncertainties were in the shaded region of the
simulation results by the parameter range. The degree of
uncertainty, r-factor is the average distance between the
95PPU and the standard deviation of the observed
variables (Abbaspour, 2015). The evaluations of the
model performance were based on recommended by the
works of literature as shown in Table 1 (Abbaspour et al.,
2015; Paul and Negahban-Azar, 2018).

RESULTS AND DISCUSSION

Streamflow sensitivity parameter: The local analysis
has confirmed that the 22 out of 29 parameters were
found are sensitive and considered to be appropriate for
Guillemard Bridge Watershed Model for all the three PET
methods. SUFI-2 uses a multiple regression and the
significant parameters that highly influences on the

streamflow simulations represent by p-value and t-stat.
The parameters with the smallest p-values close to zero
{<10.05) indicate to be meaningful and have a high level of
significance to the model and larger in absolute t-stat
values are more significance sensitive (Samadi ef ol
2017). Table 2 illustrates the rank of the 22 sensitive
parameters selected and their optimize value obtained in
the calibration process using SWAT-CUP. The p-value
and t-stat were fluctuating from 0.00-0.97 and -13.19 to
4.51 (P-T), 0.00-0.91 and -12.49 to 3.41 (P-M) and 0.00
to 0.88 and -20.97 to 25.82 (HG), respectively. The
GWOQMN (mm H,O) is a parameter that related to
the sub-base water flowing from the shallow aquifer to the
river at the certain range of aquifer depth only was
sensitive while use P-M method.

CANMX (mm H,O) is one of the sensitive land cover
features of a basin that should be calibrated independently
and the values fed-in at each HRUs before further
calibration with other sensitive parameters. The CANMX
is related to the amount of precipitation that can be
trapped in the form of droplets on the canopy and affect
the evapotranspiration. The parameters values vary from
0.25-75 depending on the selection of PET estimation
methods (Table 2). The lowest values were optimized by
models that use the HG method and the fitted values
by P-T method was five. On the other hand, the highest
value was fitted by the model with P-M method as
well as the finding by Alemayehu et al (2015) where the
higher values are obtained for models that apply P-M
method.

The sensitive parameters rank for the watershed
generally varies with the difference PET estimation
methods and divided to significant sensitive for the first
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ten and others considered insignificant sensitive. These
results suggest that the most significance sensitive
parameters were kept the same ranks due to the same
climate and topography data. Almost of the parameters
mainly have direct effect to the sub-surface water
generation of lateral and retumn flow (ALPHA BF,
GW REVAP, DEEPST, RCHRG DP, SHALLST,
LAT TIME, SOL Z, SOL AWC, SOL K and
SOLiBD) to the channel flow (ALPHA BNK, CH K2,
CH N2 and CH K1) and to the surface runoff (CN2,
CANMX, EPCO, ESCO, SURLAG and OV _N). Among
those, there was agreed that the CN2 (SCS runoff curve
number), the SOL 7 (depth of bottom layer to soil
surface) and LAT TIME (Lateral Flow travel Time) were
most sensitive for the PET methods. Whereas the CH K1
(hydraulic conductivity in tributary channel alluvium)
only showed significant sensitive with HG and it was in
the third-ranking. The base flow alpha (ALPHA BF) 1s
the parameters related to baseflow recession coefficient
factor that sensitive for P-T and P-M (Fig. 4).

The GW DELAY (time for water in the soil to
become recharge), ALPHA BNK (baseflow alpha factor
for bank storage) and the geom orphology mputof CH K2
(hydraulic conductivity in main channel alluvium) were
ranked in the top significant sensitive parameters. It was
also shown that the soil input parameters, SOL_AWC
(water capacity of soil layer) and SOL_BD (moist bulk
density) show significant to the three PET methods,
while the SOL_K (saturated hydraulic conductivity) was
msensitive for HG. While the RCHRG DP (fraction of
deep aquifer percolation), GW_REVAP (coefficient of
movement shallow aquifer water toroot zone), SHALLST
(initial water level of shallow aquifer) and DEEPST
(initial water level of deep aquifer) was assessed as
mnsignificant groundwater parameter. In addition, the
OV_N (Manning’s coefficient of surface roughness) for
surface flow estimation was more sensitive of the
geomorphology HRUs characteristics with HG and no
significant with P-T and P-M.

Uncertainty and calibration performance: The
SWAT-CUP automatically calculate the performance
statistic comparing observed data with the best
simulation. The performance obtained by SUFI-2 was
based on the best value optimized for each parameter of
the iteration and defined a new value range for each
selected parameters in each simulation band The best
model performance was evaluated by using the R2, NSE
and PBIAS values while p-factor and r-factor results
through relative measurements and simulations coverage,
were used to show the model prediction uncertainty.

Figure 5 shows the observed and simulation flow
hydrographs from the year 1985-2016 with the statistical
criteria for HG, P-T and P-M methods. The results of R2,
NSE and PBIAS values showed that a very good
calibration and good performance during validation period
over the entire catchment between observed and simulated
streamflow at the watershed outlet by using the three
PET methods. The comparison exposed that among the
three PET method, the HG performed better in term
of R2 and NSE. It was found for the HG methods,
achieved NSE value of 0.85 and 0.77 in the calibration
and validation periods, respectively. Moriasi et al. (2015)
recommended the model with NSE more than 0.80
considers excellent and the values between 0.7-0.80 were
good for monthly response output (Table 1) While
for P-T and P-M prediction, the model NSE are (.74 and
0.78 for calibration and 0.74 and 0.73 for validation,
respectively.

The p-factor of 82, 74 and 78% at the 95%
prediction uncertainty level in the calibration at monthly
time-step while using HG, P-T and P-M, respectively
shows the high percentage of observed data bracketed
by the 95PPU. Furthermore, the r-factor values of
uncertainties degree found for the best simulation to
be 0.75, 0.92 and 0.90 were <1.5 as recommended by
Abbaspour ef al. (2015). However, the p-factor calculated
with SUFI-2 yielded unsatisfactory outcomes in the
validation period where the value obtained <0.5 where
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Fig. 5(a-c): The best model performance with 95PPU SWAT-CUP illustrations of the three PET methods for monthly
output calibration (1985-2001) and validation (2001-2016) periods at the Guillemard Bridge station

the scholars proposed acceptable value more than 0.7.
Figure 5 shows clearly the observed flows were bracketed
within the 95PPU band below than 50% during
calibration compared more than 70% in the calibration
period. Figures also show the low of observed baseflow
in the years 2010-2014 and the simulation far away to
reach the peak as observed, especially in December,
2007 and 2014. These could happen influenced by
information uncertainty and inconsistency in weather data
or geography. There are also recorded big flood in whole
Kelantan catchment in year 2014 that have possibility
altered physically the surface of landscape and soil
properties. The SWAT-CUP used various parameter with

their vary ranges in calibration can affect the overall
streamflow simulation including the base and peak flow
{(Lee et al, 2018).

CONCLUSION

The model performance for the flow simulation
at the Guillemard Bridge station has proven the
effectiveness of the SWAT Model and representing
practical sensitive parameters by automatically calibration
using SWAT-CUP. The SWAT-CUP with SUFI-2
algorithm was successfully identified as the most
significant sensitive parameters for the three PET
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methods and considered to be applicable for Guillemard
Bridge Watershed. The parameters included for surface
runoff, lateral flow, channel and soil properties to be
updated in the SWAT Model. The sensitivity analysis
discovered the sensitive parameter ranking varies with
different PET estimation method. However, the most
significance sensitive parameters (CN2, SOL 7 and
LAT TIME) kept the same ranks due to the same climate
and topography data.

Conclusions that could be resulting from this study:
the significant of the parameter sensitivity analysis, which
are considered to have an influence on streamflow were
show different ranking for different PET methods in the
Guillemard Bridge Watershed However, the results
obtained show a good agreement between the three PET
methods, the streamflow simulations 1s most influenced
by the parameters such as CN2, SOL 7, LAT TIME,
GW DELAY and CH K2 SOL._K show more sensitive
while using P-T and P-M and less sensitive in HG
method. In contra, ESCOmore sensitive with HG than the
P-M and P-T methods.

The results have confirmed among the sensitive
parameters, the GWQMN was only sensitive while P-M
method was selected in the SWAT Model. The SUFI-2
results show that HG method has larger uncertainties than
the P-M and P-T for streamflow simulation. The
uncertainty for HG, P-T and P-M were 25, 8 and 10%
during calibration while during calibration were 33, 16
and 19%, respectively. HG has high uncertainty because
the PET calculation depends only onair temperature data.
Therefore, HG option should be less preferable unless
there are incomplete the solar radiation, relative humidity
or wind speed data.

Although, the NSE, R2, PBIAS, p-factor and r-factor
results value of HG, P-T and P-M were relatively small,
the SWAT Model with option P-T method was considered
more accurately reflected the smaller PBIAS and higher
r-factor than HG and P-M methods.

Overall, the performance and uncertainty result for
each PET methods, the SWAT Model with P-T methods
performed a better Rainfall-runoff Model for the Kelantan
river basin. The sensitivity findings should make an
important contribution to the field of data collections
and verifications for the hydrological modeling by
demonstrating the significant and insignificant input
parameters. In future, the performance of the SWAT
Model could be enhanced by multiple gauge calibration
and the computed ET should also be validated at each
sub-basin because it is one of the main water balance
components of a basin catchment.
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