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Abstract: Mixed type functional equation is a further step of development in the broad area of functional
equations. Many researchers introduced, various mixed type functional equations like additive-quadratic,
quadratic-cubic, quadratic-quartic, additive-quadratic-cubic and so on. But even today notably, we have only
one famous mixed type of additive-quadratic-cubic-quartic functional equation. In this study, the researchers
made an attempt to introduce such new mixed type of additive-quadratic-cubic-quartic functional equation with
its general solution and various stabilities related to Ulam problem in modular space.
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INTRODUCTION

For the detailed study on Ulam problem and its recent
developments called generalized Hyers-Ulam-Rassias
stability, one can refer (Aoki, 1950; Gavruta, 1994;
Hyers, 1941; Rassias, 1982, Ravi ef al, 2008, 2009,
Rassias, 1978). In 1950, Nakano (1950) established the
modular linear spaces and further developed by many
researchers, one can refer (Amemiya, 1957, Koshi and
Shimogaki, 1961; Luxemburg, 1959; Musielak, 1983;
Orlicz, 1988; Turpin, 1978, Yamamuro, 1959). The
definitions related to our main theorem related to modular
space can be referred by El-Fassi and Kabba) (2016),
Kim and Shin (2017). In 2015, Bodaghi et al. (2015)
investigated the stabilities of following mixed type
equation:

h(3y+z)-5h(2y+z)+h(2y-2)+10h(y+z)-5h(y-z) =
10h(z)+4h(2y)-8h(y)

For all y, zeR. In 2016, Narasimman et al. (2016)
introduced the equations quintic and sextic, respectively
of the form:

p[h(py-z)+h(py+z) [ +h{y-pz)+h (y+pz)=

(p*+p* )[h(y-z)+h(y+z)]+2(p"-p*-p*+1}h(y)
h(py-z)+h (py+z)+h(y-pz)+h(y+pz )=

(p"+p" )1 (y2)th (yrz) Jr2(p*-p"-p 4 1)[h(¥) +h(z)]

With peR-§0, £1} also discussed their various
stabilities related to Ulam problem. In 2010,

researchers Xu et al (2010) introduced a general
mixed AQCQ-functional equation and investigated
generalized Ulam-Hyers stability in multi-Banach spaces
using fixed point method.

In 2017, researchers Kim and Hong (2017)
investigated the alternative stability theorem in a modular
space using A,-condition of a modified quadratic
equation.

In2019, researchers Rassias et al. (2019) investigated
Ulam stability problem innon-Archimedean intuitionistic
fuzzy normed spaces of the generalized quartic
equation:

h{pyz)+h(pytz)+h{y-pz)+h{y+pz)=
2(p2 -1)2 {h(y)-&-h(z)};p# 0,+1

2p* {h(yz)+h(y+z)}+

Motivation from the above literature, the researchers
made an attempt to introduce a new mixed type equation
satisfied by f (x) = x+x*+x*+x* of the form:

£ (axty )+ (ax-y )+ (x-tay )+ (x-ay ) = (a+a2)
[£(xty)+(x-y ]+2f (a +a-1)

[of (x)+2f (y)+2f (¥ vy |+

28 (ay 26 () (ay) 4 (a1 22 M
f(2(x+y )+f( 2(x+y ) -4f( X+y)-4f( (X+y))+ +ﬁ
P20y ) ] (20x)) 41 (g )4 {-(x)) 12
(F(2y)H+f(-2y) A (y)-4F (-y)+E(2%)+F (2x) 4 £ ()41 (-x))
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Forallx, yeR, a#0, 1. Mainly, researchers obtainits
general solution and investigate various stabilities
concerning Ulam problem in modular spaces.

General solution of (1): additive case

Lemma 2.1: TLet X and Y are linear spaces, a
mapping I: X-Y 1s additive and odd 1f f satisfies:

fax+y )+ (ax-y )+ (x-ay )+ (x+ay ) = 5
(a+a2)[f(x+y)+f(x-y):|-2(az-l)f(x) @
Forall x, yeX, a=0, £1.

Proof: Consider f satisfies Eq. 2. Replacing (X, v)
by (0, 0) and (x, 0) in Eq. 2, we get £ (0) = 0 and:

f (ax) —af (x) (3)
Respectively, for all xeX. Therefore, f is additive

function. Let (x, y) = (0, x) in Eq. 2 and by Eq. 3 we
reached:

f(-x)=-f{x);xeX (4)
Thus f 1s an odd function.
Theorem 2.2: A function f: X~Y is a solution of Eq. 2 iff
A(x) is the diagonal of the additive symmetric map A
X~7Y such that f is of the form f (x) = A (%) for all xe3.

Proof: Let f satisfies Eq. 2 when f is additive. We can
rewrite Eq. 2 as follows:

f(x)t————

+—2(alz _l)f(XJray)Jr—z(alz_l)f(x-ay) (5

ata’
- 2(a2 _l)f(x-y) =0

For all x, yeX. Theorems 3.5 and 3.6 in (Xu et al,,
2012) implies that f is of the form:

f(x)=A (x)+A°(x) (©)

For all xeX, A° () = A’and for i =1, A' (x) is the
diagonal of the i-additive symmetric map A: X-Y.
We get A" (x) = A =0 and fis odd by £ {0) = 0
and  (-x) = - (x), respectively. It follows that
fo0=A' ().

Conversely, A' (x) is the diagonal of the additive
symmetric map A,;: X' - Y such that f (x) = A’ (x) for all
xeX, from:

Al(xty)= A (x)+a' (y)
Allm)=ra'(x);x,yeX,reQ

We see that [ satisfies Eq. 2 and this completes the
proof of theorem 2.2.

General solution of (1): quadratic case
Lemma 3.1: Let X and Y are linear spaces, amapping
f: X~Y is quadratic and even if f satisfies:

f(ax-ty )+ (ax-y) +H (x+ay )+ (x-ay) =
£ (xHy) 4 (x-y)+2a° {f(x) +f(y)}

Y

For all x, yeX, a=0, +1

Proof: Assume [ satisfies the functional Eq. 7.
Letting (x, y) by (0. 0) in Eq. 7, we get f (0) = 0.
Setting y = 0 1n Hq. 7, we obtain:

P(ax)=a'f(x) (®)

For all xeX. Thus, f is quadratic. Replacing (x, v) by
{0, x)1in Eq. 7and by Eq. 8, we get [ (-x) = { (x) for all
xeX. Thus, fis an even function

Theorem 3.2: A function f: X-Y is a solution of the
functional Eq. 7 if and only if { is of the form f (x) = E*
(x) for all xeX where E* (%) is the diagonal of the
2-additive symmetric map E,: X*-Y.

Proof: The functional Eq. 7 can rewrite in the form:

f(x )-#f(ﬂw)-ﬁf(u-y)-

1 1
Ef(x+ay)+ﬁf (x+y)+ &)
1 1

et (53 o

™ f{x-ay)+f(y)=10

Forallx, yeX. By Xuet al (2012), theorems 3.5 and
3.6, f is a generalized polynomial function of degree at
most 2 that 1s { is of the form:

f(x)=E* (x)+E' (x)+E° (x) (10)

For all xeX, where E° ()= E° is an arbitrary element
of ¥ and E' (x) is the diagonal of the i-additive
symmetric map E;: X'>Y fori =1, 2 By f (0) =0
and f(-x) = { (x) for all xcX, we get B° (x) =E"= 0 and
the function f is even. Thus E' (xX) = 0. It follows
that f () = E* (x).
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Conversely, assume that f (x) = E* (X) for all xeX
where B (X) is the diagonal of 2-additive symmetric map
E,: X*~Y from:

For all x, yeX, reQQ, we see that  satisfies Eq. 7
which completes the proof of theorem 3.2.

General solution of (1): cubic case

Lemma 4.1: Let X and Y are linear spaces, a

mapping [: X-Y is cubic and odd if  satisfies:
f{ax+y)+f (ax-y)+f (x+ay)+f (x-ay)=
(a+a2)[f(x+y)+f(x-y)]+2(a3-a2-a+1)f(x) an

for all x, yeX.

Proof: Consider f satisfies Eq. 11. Replacing (x, ¥)
by (0, 0) and (x, 0) in Eq. 11, we get £ (0) = 0. And:

P(ax)=af (x) (12)

respectively, for all xeX. Therefore, { 1s cubic function.
Let (x, y) by (0, x) n Eq. 11 and using Eq. 12, we obtain:

f(-x)="f(x);xeX (13)
Thus, f is an odd function.
Theorem 4.2: A function {: X~7Y is a solution of Eq. 11
iff C* (x) is the diagonal of the 3-additive symmetric map
C,: X*>Y such that f is of the form f x) = C* (X)
for all x eX.

Proof: Let f satisfies Eq. 11 when f is cubic. We can
rewrite Eq. 11 as follows:

flaxty)t——m—

1
f(x)+—2(a2 _1)

f(x-ay)- (14)

+ 2
f(x+y) 2?(15123-1)

2(a*-1) fxy)=0

ror all x, yeX. Theorems 3.5 and 3.6 by Xu et al. (2012)
implies that f is of the form:

£(x)=C (b ()T (x)+C° (x) (15)

Forallxe X where C°'(3)=C’andi=1,2 3, C (%)
1s the diagonal of the 1-additive symmetric map C,;: X(~Y.
We get C° (x) = C"=0and {is odd by £ (0) = 0
and f(-x) = (X), respectively. Therefore, C*(x) = 0. It
follows that f (x) = C* ()+C' (x). By Eq. 12 and
C' ) = 1 C* (x) for all xeX and reQ), we obtain
n' C'x) =n’ C' (x). Hence, C' (x) = 0 for all xeX.
Therefore, { (x) = C* (x).

Conversely, C* (x) is the diagonal of the 3-additive
symmetric map C,: X°-Y such that £ (x) = C* (x) for all
xeX from:

C* (xty )= C7 (x)H3C> (x,y ) 130 (x,y)+C7 (v)
Cx)=r'C (x), ¢ {xy)=r'c* (x,¥),

CH (e y)=r’C* (x,y),C¥ (xry ) =r’C"? (x,¥).
P y)=r'c (x,y ixyeXreQ

We see that f satisfies Eq. 11 and this completes the
proof of theorem 4.2.

General solution of (1): quartic case
Lemma 5.1: Let X and Y are linear spaces, a
mapping {: X~ 1is quartic and even if [ satisfies:

f (ax+y)+f(ax-y)+f(x+ay)+f(x-ay):
22’ {f (x+y)+f (x-y)}+2(a4 -2a* +1){f (x)+f(y)} (16)

For all x, yeX.

Proof: Consider, [ satisfies Eq. 16. Assuming (x, v)
by {0, 0) in Hq. 16 gives £ (0) = 0. Settingy = 01n Eq. 16
to obtain:

f(ax)=a'f(x) (17

¥xeX. So, ['1s quartic. By Eq. 17and x = 01n Hg. 16, we
arrive f (-y) = f (y) for all yeX_ So, { 1s even.

Theorem 5.2: {: X~Y is a solution of Eq. 16 if and only
if B* (x) is the diagonal of symmetric 4-additive map,
fX)=E'X), vxeX.

Proof: Rewrite Eq. 16 as:

1 1
f(X)'mf(aXW)-mf(aX-Y)'

1 a’

—f(x+ay J+——-7—
2(34-2212-&-1) (xtay) a‘-2a*+1

—f(xy)

f(X+y)+ (1 8)

)f(X-ay)+f(y) =0

a'-2a’+1 2(a4 2a%+1
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wx, yeX. Therefore, f is follows:
£(x)=E* (x)+E (x)4E* (x)+E' (x)4E" (x) (19)

for all xeX. As same as theorem 4.2, prove the remaining
part of this proof.

Stability of functional Eq. 1: additive case: Assume that
the linear space X, p-complete convex modular space
X, in the followng theorems and corollaries. Now,
we obtain the stability of Eq. 1 called generalized
Hyers-Ulam-Rassias  in  modular spaces without
A-condition and the Fatou property. Hereafter, we

use the following notation:

D, f(x, y) =" (ax+y )+ (ax-y )+ (x+ay )+ (x-ay)-
(ata® [ £(x+y)+f(xy)+2(a’-1)f (x). vx, ye X

Theorem 6.1: Let a mapping f: X~X satisfies:
(DL (xy))<v(xy) (20)
And amapping v : X*~ [0, «) such that:

C(x,y)iwmmex 1)
a

Then there exists A;: X-X a unique additive
mapping defined by A, (x) = lim,_,, f (a"x)/a", xeX which
satisfies Hg. 2 and:

e

B{E(x)-A, (x)) =5 -E(x.0),Vx X 22)

Proof: Substituting v = 0 in Eq. 20, we obtain:

p(f (ax)-af (x))  3v(.0) (23)
And so:
u{f(x)-@]siv(x,o),‘dxex 24

By induction on n, we arrive:

p[f(x)-m}gliv(aj.y’o),‘dxeX (25)

n i+
a 23 a

Substituting x by a®x in Eq. 25, we obtain:

ll[f(a“‘x)_f(a“““)«l)]<Ln+zmilv(a’x,lﬁ‘l) 26

a a

1151

By assumption Eq. 21 it converges to zero as m-ee.
Hence, by mnequality Eq. 26 the sequence:

{f(a”x)

n

},\V’XEX
al

is p-Cauchy and hence, it is convergent in X, since, X,
is p-complete. Thus, a mapping A;: X-X, is defined

by:
Al(Y)u-lim{f(a:X)}

n—sea a

For all xeX which implies:

]imp[f(z:}()-A1 (X)]:O,VX eX

n—eo

Next, we claim the mapping A, satisfies Eq. 2.
Setting (x, y) = (8" x, 2" v) in Hg. 20 and dividing the
resultant by a*, we arrive:

p(DAf(a“x, any)) . v(a“x,a"y) vryeX

n a"

a

Hence, by property u(ou) < au(u), O<osl, ueX , we
get:

1 prem et l
“{4a2+2a+3DA1 (X,y)]gu Df(a“x,a“y) N Df(anx,a“y)
(42’ +2at3)a" (4’ +2at3)a"

f(a" (ax+y)) }_

1
4a?+2a+3

B A (ety)-

1
4a* +2a+3

KA (aX-Y)'a—n}r

1
4% +2a+3

1 f(aﬂ(x-ay))}r

] Ay ray) =

WA (x-ay)-

4% +2a+3 a"

x+y)-
4q +2&+3“ A (x9) a*

ata? f(an (X-y))}

- e T |
4a? +2a-&-3}L A (xy) a"

2(a’-1)
4az+221+3p' Ai(X) a"

g’ f(a_n X+y))}+

49 +2a+3M a"

f(a“y)}_ 1 [Df(a“x, a“y)}
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For all x, yeX and n is positive integers. We obtain:

1
—— DA =0
H[élaz +2a+3 ! (X’y)}

ifn-o. Hence, DA, (x, ) =0, ¥x, yeX. Thus, A, satisfies
Eq. 2 and hence, it 1s additive. Since:

s 1 1
Ziz“g_*l+zgl

For all neN, by the convexity of modular p and
Eq. 23, we arrive:

2= i+l a
li pia'x 0):i§(x 0)
25 ’ 2a

for all xeX. Now, to prove the uniqueness of A, we
consider that there exists as additive mapping D;: X-X,
satistying:

11
H(f(x)'D1(X))SE§,FV(a X,O),VXEX

But if A, (x,) = D, (x,) for some x,£X. Then there
exists a constant =0 which is positive such that
e<p (A (X)-D, (x)). By Eq. 21, there is a positive
integer n,eN such that:

w 1 €
ZJ:ﬂo it v(a’y,0)< 2

Since, A and D, are additive mappings, by A (a%x,)

=a™ A, ()and D{a"x;) = a™ D, (x,), we arrive:

< “(Ai (Xu )'Dl (XEI )):
" A (a““)«zo)-f(a"“xU )_"_f(a“‘]xU )-D1 (a“"xu)

Which implies a contradiction. Therefore, the
mapping A, 1s a umique additive mapping near { satisfying
Eq. 22 m X,. From the above theorem 6.1, we obtain
Hyers-Ulam and generalized Hyers-Ulam stabilities,
respectively in the following corollaries.

Corollary 6.2: Let a mapping f: X-X satisfying:
w(D,f(xy))<evryeX

For some £>=0. Then there exists A;: X-X a unique
additive mapping satisfies Eq. 2 and:

R{f(x)-A, (x))< 27

2(a-1)

For all xex.

Proof: Letting v (x, v) = ¢ in theorem 6.1, we arrive:

N B (e e

For all xeX.

Corollary 6.3: If {: X-X a mapping satisfies:
n(D,f(xy))=<e (llx"rh Hy[" ), WX, yeX,m<1

A real number >0 then there exists A X=X, a
unique additive mapping satisfying:

].L(f(x)-A1 (X))ﬁﬁ"x"ﬂ%{e}( (29)

where, x #0 1f r<0.

Proof: Assuming v(x, v)= e (||x|[*+|ly[[*) in theorem 6.1,
we arrive:

N A e e T (30)
ST (1L b

= ey
.

for all xe3. Assuming U satisfies the A -condition and if
there exists f>0 defined by p(ax)<Bu(x) for all xeX .
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Theorem 6.4: Letting f: X-X and v: X°~ [0, =) be the
mappings satisfies:

WD, (x, y)) < v(x, ) 31
And:

ii— [—J l}}@o vx, yeX (32)

Then there exists A, X-X, a unique additive
mapping such that A, (x) = lim,___ a"f (x/a") which satisfies
Eq. 2 and:

x,0), ¥xeX (33)

Proof: Equation 23, implies that:

p[f(x)-afgns%vg, 0}, xeX (34)

Hence, by the convexity ., we have:

p[f(x)—azf[aiznﬁép
[af(x)-azf[éj}r
btz o)

2
B—v [iz, Oj, VxeX

2a \a

Then by induction on n>1, we have:

(35)

For all xeX. Considering Eq. 35 holds true for n and
we deduce the following by using the convexity of p:

H[f( )Pn+1f[ ey D:%M{af(x)-azf[gn+

%p[azf[ } “*Zf[ s Digp{f(x)-af(g]]+
Eu[f[g]-a“f{ail Dgz—ﬁav{ ,
S e o e (e o)

1., Bt 1@
TNER T
202 \a 2a* La™

The above inequality proves Eq. 35 for ntl.
Substituting x by x/a™ in Eq. 35, we arrive:

-1 sz—l m p2{a+m-1)

X a" B X
Z ] V[ J’Oj+ ] 1 fi+m=1 V[ n+m’0j
jome & a " a a

By Eq. 32 it converges to zero as m-«. Hence,
{a* f (x/a")} 1s p-Cauchy for all xeX and hence, 1t

is p-convergent in X, since, X, is p-complete.
Hence, we have:
el X
AL (x) =p-}gga f[a—nj, wxeX (37)

and by Eq. 37, we obtain:

hm;{af[ ] ()j:O,VXEX

n—sen

Hence, by the A _-condition, we arrive by taking n—es:

u{f(x)-A, (X))ﬁép[af(x)_an+1f[;{_n]}+

= & |~
=
Fa
o
b
i
Fa
[ 4
i
e
N
—
]
Mo
N A
IA
&
m|'m

I

|- g’lm

=)

%

A BN
=

VN
mﬂI%
[

A
+

= ™
<

N
m:

iin R

mﬁlx

N A
i
Ka
—
4
Z

[
1A

=]
5

Next, we prove A, satisfies Hq. 2. Assuming
(x, v) = (x/a*, y/a") in Eq. 31 and multiplaying the
resultant by a*, we obtain:

2n
(oo F) (3 2z 2
a® a" a" a® a" b

As n-e which tends to zero. Hence, the property
piyw<yp(w), O<y<1, ueX, implies that:
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n a a n a a
—— DA (xy) |2y ——D, A (x v)- + <
JLL[z1az+2a+3 s (x y)J M@ izam * (% y)-a (42’ +2a+3) ? (42’ +2a+3)

1 ax-y
—_— ax+ A (ax-v)a"f +
ba a3 [ ¥)- [ D 4a° +2a+3“[ () [ a® D
npf X-8Y
—u A x+a A, (x-ay)-a'f +
4a’ +2a+3“[ : y)2 { D 4a’ +2a+3“{ ; (xay) [ a® D
x+ ata’ X-y
————u| A, (x+ f e y)-af +
4a° +2a+3“[ (xv)a D 4a2+2a+3l{ eyt { D
1 X ¥y
Al —————p|a"D,f| —, = ||, ¥x, yeX
4a’ +2a+3p[ ? 2 J 4a2+2a+3u{ * {a“ a® D y
As the limit n—e, we obtain: In the following corollaries of theorem 6.4, we obtain
Hyers-Ulam and Hyers-Ulam-Rassias stabilities,
1 respectively.
———D,A (% Y)|=
JLL{4aZ+2a+3 aha (% y)]

And hence, D, A, (x, y) = 0, ¥vx, v € X and A,
satisfies Eq. 2. Hence, it is additive. To prove the
uniqueness of A,, assume that D,: X-X, a additive
mapping satisfies:

1 &pY
u{f(x)D )£2_§a_ [— 0} vxeX
Since, A, and D, are additive mappings and:

a*A, [ai] = A, (x),a"D, [;{—n} D, (x)

Implies that:

a a
i)
e (SR T
a
T3
a
1+l w 29 1+l o 2]
LA <Y S Wl <Y [ ,0)
a 2aJ = aJ a’*“ a 221J T al \a™
ot w Bz, x @ (J+n)

2

J‘a

Z

#n ]+n

s e

As n—o it tends to zero. Therefore, A, satisfying
Eq. 33 and is a unigue additive mapping,

Corollary 6.5: Let a mapping f: X-X satisfying:
p.(Df(X,y)) <ex,yeX,ex0

for some p*< a. Hence, there exists a unique additive
mapping A,: X~X which satisfies Hq. 2 and:

- WxeX

(38)

VxeX

(39
Corollary 6.6: If {: X-X a mapping satisfies:

w(D,f(xv))<e ("x"’" Hy[® ),Vx,y eX

For given real numbers f*<a™ and =0 then there
exists A, X~X a unique additive mapping such that:

g +
Qa(am

F)

H{E(x)-A, (x)) I vxex a0

where, x#0, 1f r<0.

Proof: Considering v (x, v) = € (||x|[*+||y||*) in theorem
6.1, we arrive:
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(41)

Stability of functional Eq. (1): cubic case: We obtain
generalized Hyers-Ulam-Rassias stability of Eq. 1 1n
modular spaces without A -condition and the Fatou
property. Hereafter, we use the following notation:
D, (x,y) =1 (axty)+ (ax — y)+ ( x+ay )+ (x-ay) -
(a—&-az)[f(X+y)-&-f(x-y)]-z(a3 a* -a+1)f(x)
Forall x, yeX.

Theorem 7.1: Considering f: X-X a mapping satisfies:
n(Df(x.y))<vixy) (42)
And amapping v: X*-[0, «) satisfies:

@ ] 1
Q(X=Y)=ZM<OO,VX,yeX (43)
=0

3
a i

Then there exists C;: X-X a unique cubic
mapping defined by:

Which satisfies the Eq. 11 and:
1
H{£(x)-C, (X)) =L (x.0) Wy e X (44)
Proof: Assuming x = 0in Eq. 42, we obtain:

p(f(ax)-azf(x))iév(x,o) (45)
And hence:

p{f(x)_f(ix)J<2_13v(X,0),VX eX (46)

Generalizing, we arrive:

fla"x 12 via'x,0
”[f(x)' & )}EZU Wt ex @

u[f(a’“x)_f(a"*’“x)}ngsz¢(ajx,0) (48)

By the assumption Eq. 43 it converges to zero as

fla"x
m-~. Hence, Eq. 48 implies that the sequence { e )}

is p-Cauchy and therefore it is convergentin X , since, the
X, 1s p-complete. Hence, we define C;: X+X as:

¢ (9=, {f(j;f)}wex

Hereafter, we complete this proof by similar way
of theorem 6.1. In the following corollaries of
theorem 7.1, we obtain stabilities called Hyers-Ulam and
Hyers-Ulam-Rassias, respectively.

Corollary 7.2: Let a mapping {: X~X satisfying:

p(Df(X, y)) <e,¥x,ye X

for some >0 and a*>1. Then, there exists C,: X-X, a
unique cubic mapping which satisfies Eq. 11 and:

S

R(f(x)-C,(x))< o) (49)

For all xeX.

Proof: Assuming v (%, y) = € in theorem 7.1, we arrive:

For all xex.
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Corollary 7.3: If f: X-X a mapping satisfies:
p(D.£(x.y) =< [P +IT ) vy =

For given real numbers m<3 and >0 then there
exists a unique cubic mapping C,: XX, such that:

e )b e sy

where, a=0 if m=0.

Proof: Assuming v(x,v) =€ (||x|™ +||v||™) in theorem 7.1,
we obtain:

R ZL iu (| x|| +0)<ij [z_jjuxnmg

T W <

For all xeX.

Assuming anontrivial convex modular p satisfies the
A ~condition if there exists =0 such that p(ax)<pu(x) for
all x X, where Pza and hence, u(a’x)<M p (x).

Theorem 7.4: If a mapping f: X-X satisfies:
m(DI(xy))<

v(xy) (53)

And v: X?~[0, =) is a mapping such that:

@(x,y)=ngfv[ij al}myex (54)

oA a
Then a unmique cubic mapfrﬁ C,: XX, exists and

defined by C, (x) =lim, _ a™f xeX which satisfies
Eq. 11 and:

]..I.(f(X)-Cz(X))S%C(X,O),VXEX (55)
Proof: Equation 45 implies that:

p[f(x)-af@}s%qﬁﬁ}w =X (56)

Hence, by the convexity p, we arrive:

i
o
M
2

Generalizing, we obtain:

;{f(x) (@) f[in}] < lnzl:le v [i,0]+

a 29 a
LMDy
E 22 ) v a_n’o

For all xeX. The rest of proof is similar to that of
theorem 6.4. In the following corollaries of theorem 7.4,
we obtain the stabilities called Hyers-Ulam and
Hyers-Ulam-Rassias, respectively.

Corollary 7.5: If a mapping {: X-X, satisfying:
p.(Dcf(x,y)) <€, Vx,yeX

For some £0and M*<a’. Then there exists C,: X-X,
a unique cubic mapping which satisfies Hg. 11 and:

p(f(X)-CZ (X)) <

eM?
—23(33 o ),VX eX (58)

Proof: Assuming v (%, y) = € in theorem 7.4, we arrive:

1 & eMy eMalM?Y  eM?
2a

_Z 3 (az _M2)

V(f(x)'cz (X))S 7a = a3 T 22t a
(59)

¥YxeX

Corollary 7.6: If f: X~X a mapping satisfies:

(0,05 9)) <= (A ) vy

For given real numbers M <a™ and >0 then a

unique cubic mapping C,: X~X exists such that:

eM?
Za(am”-ME)

B(F(x)-C; () < WP vxex o)

where x=0, if m<0.

Proof: Assuming v (3, y) = € (||x]|™ + ||y||*) in theorem
7.1, we arrive:
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X

a’

p(f(X)-CZ (X)) <21—aiM—zj{e

3
=1 a”

N Iy
2a(a3.a’“) a’a" 2a(a’“+3-M2)II

" ol M Vo
o325

Tla'a

(61)
For all xeX.

Stability of functional Eq. 1 in quadratic and quartic
case can be analyzed by similar method were used in
section-6 and 7.

CONCLUSION

We introduced a generalized mixed type of
additive-quadratic-cubic-quartic functional equation with
its general solution and various stabilities concerning
Ulam problem in modular spaces by considering with and
without A, -condition.
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