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Abstract: A Bavesian parameter inference problem is conducted to estimate the explosive yield of the first
atomic explosion at Trinity in New Mexico. Using data taken from archival film footage of the explosion and
a physical model for the expansion characteristics of the resulting fireball, a yield estimate is made. Inaddition,
the observed correlations between the yield and other parameters in the time-radius fireball expansion model
are constructed. Bayesian results indicate that the estimated parameters are consistent with previous estimates
and model predictions but possess some characteristics of significance which impact the radius-time fireball

expansion model.
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INTRODUCTION

G.I. Taylor famously estimated the classified yield,
E of the 1945 nuclear explosion at Trinity, New Mexico,
using nothing but images publicly released by the US
Army into the open media (Mack, 1946) Fig. 1. Published
with both a time stamp and length scale, Taylor was able
to use the images in conjunction with his theoretical
time-dependent model of the hydrodynamics fireball
radius (Taylor, 1950a, b) to provide an accurate estimate
of the weapon’s explosive yield of 16.8 kT. His
hydrodynamic model predicted the fireball Radius, R as
a function of time, t in terms of a non-dimensional
constant he computed, S, the estimated undisturbed
density of air at Trinity, p, and the unknown explosive
yield, E:

R(t;E):StZISEUSpD—US (1)

This result, independently presented by other
researcher (Betha and Fuchs, 1946), established the
unique dependence of the fireball’s radius on the 2/5th
power of time. The approach pioneered by Taylor to
estimate explosive yield has since, been applied numerous
times and validated using independent measurements of
explosive yields.

Taylor’s and all subsequent analyses, considered the
time-radius model to depend on only one parameter, E,
assuming fixed values for the exponents and model
parameters S and p,. In contrast to this one-parameter
approach, the current study considers all of the parameter
in equation 1.1, other than the measured values R, tand p,
as unknown parameters to be determined. In addition,
this study employs a Bayesian approach to nonlinear

Fig. 1. Asingle movie frame showing the fireball created
by the first nuclear explosion at Trinity, New
Mexico including time stamp and length scale

regression for determination of the unknown parameters
and provides a detailed Bayesian analysis of the Trinity
data using Markov Chain Monte Carlo (MCMC)
techniques. These results are compared with the original
model, Eq. 1 as well to independent estimates of Trinity’s
explosive yield.

Ultimately, it is the objective of this Bayesian
analysis 1s to determine the joint probability density
function (pdf) of these free parameters, most specifically
yield, H, so as to better match and interpret the
experimental data available. Such an analysis will offer
greater insight into the parameters values as well as their
interdependence. The specific definitions chosen for these
parameters are defined in (Eq. 1 and 2):

R(t)=StE"p,* (2
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Well-known nonlinear regression techniques
(Gallant, 1975; Kass, 1990) based on frequentist statistics
exist are capable of determining these unknown
parameters using the measured time-radius data. The
frequentist approach, however, provides only a limited
amount of information about the parameters. This is
because traditional regression analysis assumes the
parameters to be fixed, exact values while the measured
data are random variables dependent on these parameters.
While useful, this statistical model of the data provides
only limited information about the parameters.
Specifically, this approach provides directly point
estimates of the parameters. Higher order statistical
moments of the parameters such as standard deviations,
allowing for the generation of confidence intervals can
also be computed but require further assumptions about
the distribution of error in the data. In addition, no
information 1s typically returmed about inter-parameter
relationships such as statistical correlations which would
lend greater insight into the parameters and their effects
on the fireball.

Incontrast, Bayesian regression assumes that both the
parameters and the measured radii are random variables.
In this study, the statistical model used for the data
assumes this randomness results from an additive noise
term whose statistics can be determined by the Bayesian
analysis. Consequently, the Bayesian model requires a
sixth parameter to characterize the statistics of R to which
we will assign the random variable. For convenience the
model parameters will be grouped in the parameter
set =4S, E a, b, ¢, e}

Assuming that the parameters are random vanables,
rather than fixed quantities, allows us now to ask directly
about their statistics, not just mean values and confidence
intervals. Specifically, we are now considering the joint
statistics of the parameters, 6, conditioned on the
measured data set, R. This is significant because the
parameter’s resulting joint pdf contains all of the
parameter’s statistical information including all higher
order statistical moments and correlations.

MATERIALS AND METHODS

Nonlinear regression: Regression analysis represents a
core application of statistical science {Casella and Berger,
2002; Boos and Stefanski, 2012, Wasserman, 2010). Its
objective given a system model with unknown
parameter, 0 = (0,, .., 0),0=0" and often noisy
observations is to determine estimates of the model
parameters 6=(8,,... 6, ) as wellas statistical information
about their expected wvariation and possible
interdependence. This primarily occurs for one of two
reasons: to develop a model relationship between a
dependent variable y = (y,, ..., y_)cR* and an independent
variable, x = (3, , ., %) x cR* for the purpose of

predicting system behavior for other, unobserved,
dependent variable values or to gain insight into the
characteristics of the observed system through
interpretation of the determined parameter values and
their statistical characteristics.

The inference of the parameters 0 using regression
techniquesis based on either a frequentist or Bayesian
statistical foundation (Fahrmeir ef al, 2007). In the
frequentist approach probabilities are thought of as
limiting frequencies based on a hypothetical, infinite or
asymptotic sample. In contrast, the Bayesian approach
views probabilities as subjective and are interpreted as
conditioned on the information available (Wakefield,
2013). In either approach, often the primary aim is to
provide point estimates or “best guesses” for the unknown
parameters 6 and corresponding interval estimates that
provide reasonable ranges for the unknown parameters
given the data.

While having similar objectives, the frequentist and
Bayesian approaches to regression are fundamentally
dissimilar. The frequentist framework for regression
assumes the model parameters, 8 are unknown but fixed,
nonrandom quantities. Consequently, no probabilistic
conclusions can be drawn about frequentist parameters.
The estimated parameter values are still uncertain but this
uncertainty arises from the random nature of the
observations y. Probabilistically, the frequentist approach
models the observations, v as elements of a random
variable y, dependent on the model parameters, 8 a
relationship which can be defined by the conditional
probability density function p (y|0). While useful, this
statistical model of the data is limited in the information
it can provide. Treating the unknown parameters as fixed
constants masks much of the information about their
variability and interdependence.

In contrast to the frequentist approach, Bayesian
regression assumes that both the parameters, 0 and the
measured observations, y are random variables. This
assumption allows us to naturally ask directly about the
statistics of the parameters, not point and interval
estimates. Statistically, we are now considering the joint
statistics of the parameters, 8, conditioned on the
observations, y, represented by the joint conditional
probability density function p (8]y). This is significant
because the probability density function p (8]y) contains
all of the parameter’s statistical information including all
higher order statistical moments and interdependences.

Several formulations of both the frequentist and
Bayesian approach to regression are available, however,
the most encountered techniques employ likelihood
functions. Likelihood functions are functions of the moedel
parameters, given specific observed data, that measure the
plausibility that a system with the specified parameters
generated the observed data. It is functionally identical to
the frequentist description of the data, p (y|9) with the
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important difference that the Likelihood, L is a function
of the random variable 8 not the observed data y. To
emphasize this dependence the likelihood is written as an
explicit function of 0:

L(6)=p(y[0) (3)

Or for both computational and mathematical
convenience as the loglikelihood:

1(0) =log(L.(0)) 4)

As an example, consider a nonlinear regression
model:

Y, =g(x.0)+te i=1, ..n (5)

where, g 1s a known function of the known, nonrandom,
independent variable x = (x,, .., x,) and the random model
parameter 6 =(0,, ..., 6). In addition, y = (y, ..., y,) 1s the
dependent random variable and e = (e,, ..., e,) is the
random error associated with the observations y. If the
random errors are assumed independent and identically
distributed (ii.d.) as Normal, N (0, 6%

L(B):“ ! cxp{_—(y,-g((x‘,e))z}

i1 2o 20
Ly (v.g(x,8) ©
- (Y-8 (X,
( ZJ'EGJ exp{-; 207 }
And the log likelihood is:
1(6) = -nlog (0)-5= 3 (v.-2(x,. )] Y

From (Eq. 7) it can be seen that maximizing the
likelithood 1s the same as mimimizing the residual square
error or S (0):

5(6)="(5.-8(x,.9)) (8)

i=1

So, under the iid Normality assumption, the
Maximum Likelihood Estimator (MLE) 1s the same as the
Least Square estimator (LS). Depenchng on the form g
takes values for the best estimate, d=8,,, =8, can then
be determined analytically or numerically. If each a(x, 0)
is differentiable with respect to 8, & will satisfy:

——==0,(r=1,...,p) ©)

Which for most models cannotbe solved analytically,
so that, iterative methods are necessary (Seber ef al,
1989). Likewise, if we set the derivative of the log
likelihood function with respect to equal to zero and
solve we find that:

&, =% var=Lly (y‘ 2(x.000 ) (10

However, it is common in practice to use the
unbiased estimate:

& =n+g(yj-g(x.,fam)) (1

i

The maximum likelithood estimate, under certain
conditions, possess appealing properties. The main
properties are consistency in that the parameter estimate
converges to the true value with probability one;
equivariance in that the if 6,, is the MLE of 0

then f (6, ) is the MLE of f(6) and that it is

asymptotically optimal meaning that among all
well-behaved estimators, the MLE has the smallest
variance for large samples (Wasserman, 2010).

Bayesian regression: Bayesian regression differs from
maximum likelihood regression. Its objective is to
determine the parameter’s conditional pdf p (8ly) which
can be expressed using Bayes law (Bernardo and Smith,
2009):

p(y[8)p(8)

p(y)

p(0ly)= (12)

Where our desired distribution, p(8|y) is the posterior
distribution p (y|6) is the likelihood distribution p (8) is
the prior distribution and p (v) is a normalization factor
(Gelman et al, 2013), effectively the marginal
distribution of ¥ computed by integrating the numerator
over the model parameter space, 0<® (Gelman el al,
2013). The posterior distribution is significant in that it
provides a complete description of the model parameter
statistics conditioned on the given data y including all
moments and correlations. The likelihood distribution
characterizes the probability that parameter set ©
generated the observed data set v. Existing knowledge
about the parameters can be incorporated into the model
through the prior distribution, p (0) which characterizes
the probability that a particular parameter set 0 will occur.

Analytical, closed form representations for the
posterior distribution can be determined most directly
when the posterior and prior are in the same probability
distribution family (Gelman et al, 2013). Termed
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conjugate distributions or a conjugate prior, this choice is
often driven by analytical convenience rather than
modeling accuracy. The simplest example of conjugacy
would be the scenario where the prior distribution,
likelihood and therefore the posterior distribution are
normally distributed. Unfortunately, in nonlinear
regression, conjugate distributions are rarely available
beyond the linear model.

In most common regression situations, the posterior
distributionis estimated numerically by sampling sets O;
from the distribution p (v]0) p (0) after statistical models
for the likelihood and prior distributions are defined. The
parameter values drawn from the joint probability density
function are typically determined using a Markov Chain
Monte Carlo (MCMC) simulation employing the
Metropolis algorithm (Metropolis et al, 1953) or its
variant the Metropolis-Hastings algorithm (Hastings,
1970). The algorithm works by exploring the parameter
space, computing posterior values while randomly
sampling more and more likely parameter sets. The result
1s an overall movement of the parameter choices toward
the peak of the distribution and an ultimate estimate of the
most likely parameters termed the Maximum A-Posteriori

(MAP) parameters 0,., . Essentially the mode of the

distribution, the MAP is the parameterset most
representative of the best fit parameters.

Markov chain monte carlo: MCMC sampling 1s done
sequentially with the statistical distribution of the next
parameter set 6,,, only dependent on the current value 6,
resulting in the sequence’s Markov characteristics.
Generation of a Markov chain representative of the
posterior distribution, p (08]y) is accomplished using the
Metropolis-Hastings algorithm. The algorithm works by
first generating a proposal parameter set, 8,,, by adding a
random displacement or jump in the parameter space, ®
to the current parameter set 0, using a proposal
distribution. If the ratio of the proposed posterior value to
the current posterior value 1s greater than the value of a
uniformly distributed random number between 0 and 1,
the parameter set 0., is added to the Markov chain. If
lower, the proposed parameter set is rejected and the
current parameter set 0, is added again to the end of the
chain.

In addition to its simplicity, the Metropolis-Hastings
algorithm is valuable because it avoids the need to
calculate the Bayesian normalization factor in Eq. 12.
This is because when deciding whether or not the
magnitude of the posterior distribution of one parameter
set is greater than another, the ratio of the posterior values
1s considered rather than theirr difference. This 1s
significant because the normalization factor can be
difficult to compute in problems with many parameters,
even numerically. In addition, this allows for great
flexability when defiming the likelihood and prior
distributions  because their normalization 1s not
required.

Bayesian parameter estimation: A Bayesian analysis of
the Trinity time-radius data used by Taylor (App. A) is
conducted to estimate the parameters in the time-radius
fireball expansion model and their interdependence. In
this Bayesian regression application (Box and Tia, 2011;
Deniscn et al., 2002), the likelthood distribution is chosen
to be the negative of the residual sum of the squares,
specific to this application:

0)= > (R -R(1,0)) (13)

=1

Where:
: The measured fireball Radius at time t,
R (t; 8) : The Radius predicted by the model

Equation 2 at time t, using parameter set 0. Because ©
is a random variable, so is the residual sum of the square
error, S. For this study the likelihood is assumed to be
normally distributed with zero mean and standard
deviation €:

SON(0,€") (14)

Peaking when the fit is perfect, 5 = 0 and decreasing
from othere. Strictly speaking this is not a valid pdf
because the residual square error is never negative and
therefore, the distribution is not properly normalized. This
1s however, acceptable becausen either of the Metropolis
algorithms require the normalization of the posterior
distribution for the computation of the Markov chain and
consequently, neither do the parameter’s pdfs.

For the prior distributions it 1s argued that the
individual parameter values will be distributed smoothly
and symmetrically about their mean value. Asaresult, the
parameters are assumed to be distributed as amultivariate

normal distribution with mean 9, where the subscript pr
indicates prior information:

epf:{Spf’apf’bpr’cpf’Epf’Epf} (15)

Because few details are known about the statistical
relationship between the parameters a priori their
distributions are assumed to be statistically independent
of one another and consequently, uncorrelated.
resulting in an assumed, diagonal, prior covariance
matrix }

s, 0 0 0 0 0
0 o, 0 0 0 0
0 0 o, 0 0 0
270 0 o ol 0 0 (16)
0 0 0 0 oy O
o 0 0 0 0 o
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Fig. 2(a-f): Initial 6000 steps of Markov chain #1 (a) S, (b), a(c), b, (d), c (E)and (F) &
As with the statistical model of the residual square 6% 0 0o 0 0o 0]
error, 3, the prior distributionis also defined for unrealistic 0 & o0 0 0 0
T % E - . . P
negative values. This inconsistency is unimportant, o o0 o 0 0 0
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however for the same reason given for 3. ™ o 0 (; < 0 0 (17
i
; ; o 0 0 0 oy 0
Markov chain Monte Carlo computations: Each sample o o o o (I;E ;
of 6 drawn from the posterior distribution contains six L e |

values, one for each parameter in the set
Individually, the values of the parameters in each , drawn
occur with the statistical characteristics of the underling
joint conditional density function p{8[R). This includes the
frequency with which individual values are observed as
well as any correlations that exist between them.
Therefore, drawing samples, j = 1, ..., L, provides an
estimate of the underlying joint probability density.
Theory predicts that as the number of samples approaches
infinity, L.-eo, the estimated parameter distribution will
converge to the theoretical distribution, p(6R).
Consequently, the result of the sampling is an estimate of
8s six-dimensional joint pdf {or the parameters S, E, a, b,
cande.

Inthis study, the proposal distribution is assumed to be
a six-dimensional, multivariate, normal distribution with
the mean value being the current parameter 0, set and with
covariance matrix, &, characterizing the parameter jump
statistics and their correlations. As with the prior
distribution, the proposal’s covarianceis unknown.
Therefore, out of necessity, the individual parameters are
assumed to be statistically independent, resulting in a
diagonal proposal covariance matrix where the subscript
p indicates proposal information:

This deficiency is improved upon by updating the
proposal covariance adaptively using aportion of the
Markov chain itself as described below. Updating
in this way results in a fully populated proposal
covariance matrix during the later stage of the Markov
chain. As a result, parameter proposals are more
likely to be accepted, improving the efficiency of the
algorithm’s search for the peak of the posterior
distribution.

In total, the Markov chain can be displayed as a series
of staircase traces, each tracking the values of a single
parameter in the chamn. The result at each step in the
Markov chain 1s a series of six numbers, one for each of
the parameters. An example of the initial 6000 steps of a
posterior distribution’s Markov chain 1s shown in Fig. 2.
Accepted proposal parameter sets are indicated by
horizontal steps while retained current parameter sets
results in vertical steps.

In principle, the chain shown contains all of the
statistical information about the parameters including
mean values and correlations. This information 1s very
difficult to ascertain from the Markov chain directly, so,
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Fig. 3 (a-f): Marginal distribution histograms of the 6000 step Markov chain (a) S, (b), a (c), b, (d), ¢ (e) and (f) &

Table 1: Taylor’s parameters prediction used as prior means
5 a, b T E =

Tl 04 0.2 02 168 ¢

Table 2: Prior variances

2 2 2 3
O s g O e O e UzprE O e
pra

1.0E0 1.0E-4 2.5E-5 1.0E-4 4.0E0 2.5E1

typically the statistics of the individual parameters are
displayed using their marginal distributions in the form of
histograms. The marginal distribution histograms for the
6000 step Markov chain in Fig. 2 are shown in Fig. 3.

Correlation information is even more difficult to
ascertain from a visual inspection of the Markov chain
and 1s better understood through inspection of the chain’s
covariance and correlation matrices.

Metropolis algorithm implementation: The technique
outlined above has with great consistency been used to
estimate the posterior distribution of the parameter set,
6 =18, E, a, b, ¢, €} and therefore, Taylor’s Model
parameters (1.2) using the fireball data associated with a
number of nuclear explosions. To demonstrate the
technique the results for the analysis of the Trinity
explosion are presented. The total radius-time data set
available is composed of 25 radius-time pairs (App. A).

Implementing the technique firstrequired the selection
of mean values and variances for each of the prior and
proposal normal distributions. Because of the known
accuracy of Taylor’s prediction, the selection of mean

values for the explosion-independent parameters in the
prior model, S, a, b, ¢, can be accurately estimated using
Taylor’s theory, (Eq. 1 and 2) while an estimate of the
explosive yield can use Taylor's original estimate of
16.8 kT (Table 1). The prior means have additional
importance. Being our best guess for the parameter values
they are used to inmitialize the Metropolis algorithm.

Unlike mean values, little is known about the
parameter’s variances and correlations. For this reason,
the parameters are assumed initially statistically
independent and therefore uncorrelated. In addition, as in
many instances, prior variance values were chosen based
on intuition (Table 2).

While the mean value of the proposal distribution is
known, chosen as the current parameter set, the proposal
variances were determined using scientific judgement and
trial and error. Realistically, each proposed parameter set
should be reasonably “near” the current parameter set. For
this reason, a trial set of proposal variances were chosen
then varied systematically until a usable, stable, Markov
chain was produced. The final proposal variances used in
the MCMC simulation were uncertainty in these
parameters and their effect on simulation results was of
concern. For this reason, the sensitivity of the posterior
distribution to changes in the Metropolis algorithm’s
starting point was investigated. In the study, the
Metropolis algorithm’s initial parameter set was randomly
perturbeda maximum of 50% from their iitial
values. The resulting Markov chains were recorded and
shown to converge. An example from the study for
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Fig. 4: Parameter convergence example

parameter ais shown in Fig. 4 with the red dots at step
zero indicating tenrandomly chosen initial parameter
values. In every instance, each similarly perturbed
Markov chain parameter converged to a common
distribution. The dramatic change in the character of
Markov chain component at step 100,000 is due to an
adaptive change in the proposal covariance matrix which
1s discussed in more detail below.

RESULTS AND DISCUSSION

Using fireball radius-time data from the Trinity
explosion and the prior and proposal data defined above
an estimate of the parameter’s posterior distribution was
generated. To accomplish this three 200,000 step Markov
chains were independently generated During the
simulation, each chain was divided into four segments.
The first three segments were discarded and were only
executed to improve the quality of the fourth segment
which was retained for analysis.

The first segment, conservatively chosen and
accounting for 25% of the chain (50,000 steps), termed
“burn-in" was a series of steps within which the chain was
allowed to stabilize and reach some approximate
equilibrium. The second segment(tune-in),accounting for
24.5% of the chain (49,000 steps) was used to generate an
estimate of the chain’s covariance. The estimated
covariance was then used as the Metropolis algorithm’s
proposal covariance during the third and fourth segments
of the chain. The third segment was a short 0.5% (1000
step) delay to allow any transients in the chain resulting
from the covarniance switch to dissipate. The fourth
segment, accounting for the remaining 50% of the chain

Variables

{collection) used the estimated covariance from the
tune-in segment to generate improved, correlated steps.
The three separate collection segments, one from each of
the chains were then combined to produce a composite
Markov chain. The combination of the individual chain
segments was justified by comparing their consistency
within and across each chain, confirming that each chain
had converged to the same distribution. The consistency
check was performed by computing the chain segment’s
Gelman-Rubin statistic (Gelman et al, 2013) which
indicated convergence.

An example of a complete 200,000 step chain
showingthe burmn-in tune-inand collection segments
separated by dashed lines is shown in Fig. 5. Early
segments inseveral of the parameter’s chain contributions
show significant variation, indicating the utility of the
burn-in period while the change in the characteristics of
the Markov chain resulting from the updated covariance
matrix segment are dramatic and improve the Markov
chain’s exploration of the parameter space.

An example of a composite Markov chain constructed
from three converged collection segments is shown
inFig. 6. Each parameter’s contribution to the composite
Markov chain was then used to generate their marginal
distribution histogram also shown in Fig. 6. Superimposed
in red on the marginal distribution histograms are the
parameter’s prior distributions.

A summary of the parameter statistics for the
composite Markov chain, determined from the marginal
distribution histograms and their existing prior/estimated
values are shown in Table 3 and 4. A Maximum A-
Posteriori (MAP) setis provided as well. The MAP set is
the parameter set whose values occur in combination to
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Fig. 5: One complete 200,000 step Markov chain showing burn in, up to red dashed line, tune-in between the red and
green dashed lines and collection from the green dashed line until the end of the chain segment (a) 3, (b), a (c),

b, (d), e (E) and (f) £
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Fig. 6: Continue
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Fig. 6: Composite, 300,000 step Markov chain and their marginal distribution histograms. The red lines show the prior
distribution proposed for each of the parameters (a) S, (b), a(c), b, (d), ¢ (e) Eand (e) ¢

Table 3: Proposal variances

02lOs Gzpﬂ Gzpb Gzpc Gsz Gzpe
1.0EQ 1.6E-3 4.0E-4 4.0E-4 4.0E0 1.0E0
Table 4: Parameter statistics
Parameter Average SD MAP Prior estimate
S 21.040.000 1.99E-1 21.0 210
a 0.390=+0.000 1.30E-2 0.391 04
b 0.202=0.000 1 40E-2 0.199 0.2
C 0.200=+0.000 1.00E-2 0.200 0.2
E 16.8+0.00 2.51E-1 16.8 168
€ 7.72+0.000 8.74E-1 776 10
Table 5: Parameter’s covariance matrix
S a b C E 5
3.97E-02 -1.13E-04 -5 A5E-04 4.94E-06 4.13E-04 -3.29E-04
1.56E-04 -1.51E-04 1.95E-08 -4 98E-05 2.53E-04
2.04E-04 6.77E-07 -2.17E-04 -2.71E-04
9.92E-05 -1.68E-05 -3.71E-05
6.29E-02 -1.31E-03
7.64E-01
Table 6: Parameter’s correlation matrix. The largest off-diagonal terms (>-1x107") are shown in red
S a b C E €
1.00E+00 -4.55E-02 -1.91E-01 2.49E-03 8.29E-03 -1.89E-03
1.00E+00 -8.46E-01 1.57E-04 -1.59E-02 231E-02
1.00E+00 4.75E-03 -6.05E-02 -2.17E-02
1.00E+00 -6.73E-03 -4.26E-03
1.00E+00 -5.98E-03
1.00E+00

maximize the posterior. Because of the large data set the
95% confidence intervals for the different parameters,

determined from the Markov chain are essentially zero to
the precision shown. While mean values and confidence
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intervals are of interest most unique to the analysis arethe
covariance and correlation matrices of the composite
Markov chain’s parameters, examples of which are
shown in Table 5 and 6. The covariance matrix, Table 5
1s of interest because the magmtude of the off-diagonal
terms quantifies the degree of dependence of one
parameter on another. The magnitude of each correlation
term 1s however, scaled by the general magnmtude of the
parameters considered.

Asaresult, comparison between covariance terms for
the purpose of determining the relative strengths of their
effects from one parameter to another 1s difficult. For this
reason, the correlation matrix (Table 6) is considered
because it more directly shows the relative influence of
each parameter on the others as each correlation
coefficient has been normalized. The largest off-diagonal
correlation term (=1x10"") is showninred. Consequently,
the exponents a and band the parameters b and sare most
strongly correlated. Of particular interest is the lack of a
strong correlation between E and b. Strictly speaking
parameters E and b are potentially umidentifiable in
combination producing a single value. For this reason, it
was expected that there would be an anti-correlation
between the two parameters which was not observed.

In general, the Bavesian MAP parameter values
(Table 4) are consistent with Taylor’s theoretical
predictions (Table 1) except for the parameter a which 1s
found to different significantly from Taylor’s prediction.
With a value of the Bayesian estimate differs from
Taylor’s prediction of 0.4 by 0.009 (2.3%). While not
large in absolute terms or relative to the parameter’s
Markov chain standard deviation 6(0.692 o) (the value 1s
estimated with considerable precision strongly supporting
the observed difference.

The significance of a’s deviation from Taylor’s
Model prediction 1s most dramatically demonstrated by
plotting the theoretical model predictions for R vs.
t (Eq. 2) using both Taylor's parameter predictions
(Table 1) and the Bayesian MAP values (Table 4) versus
the observed data (App A). The resulting plot (Fig. 7)
shows a good match between both models and the
observed data at early times but significant deviations
between Taylor's Model and the observed data at late
times. In contrast, the model using the MAP parameter
values much more closely follows the observed data for
all times. This deviation is not unexpected as the
parameter a 1s the exponent of the independent time
variable, t.

This indicates the importance of the parameter a in
the radius-time model and shows the dramatically
improved fit to the measured data provided by the model
using. This difference is also significant in that the value
for a, traditionally assumed to be 0.4 1s the basis for the

most commonly used methods for explosive yield
determination. In addition, the lower value predicted
for ay,, 1s supported by the more detailed fireball
expansion theory by Porzel (1951) which predicts a to be
0.372.

While the point-wise MAP estimates provide
insight into the optimum parameter values, Bayesian
parameter variation 1s still present due to the
expected variation 1in the parameter set along the
Markov chain. An indication of this variability is shown
in Fig. 8 where 50 radius-time model predictions,
generated using 50 parameter sets chosen randomly from
the composite Markov chain are shown, Fig. 8. This plot
while showing considerable variation is centered around
the MAP Model prediction and observed Trinity data set
analyzed.

Parameter’s covariance and correlation matrices as
derived from the Markov chain are presented in Table 5
and 6. In general, correlation coefficients are low,
typically <t10% Two comrelation coefficients are
however, considerably larger inmagnitude than the others
{shown in red in Table 6). The values indicate unusually
large anti-correlations between parameters b and the
parameters S and a. The anti-correlation between b and S
seems the less interesting of the two as the parameter b is
the exponent of E (Eq. 2), combining to produce what 1s
effectively a multiplicative constant as 1is the
parameter S. They vary inversely with respect to each
other in effect canceling each other out. The more
provocative anti-correlation 1s the one between
parameters a and b. The parameter a as previously
discussed 1s particularly important as the exponent of
the independent time variable, t. The sigmficance of
its anti-correlation with b 1s however, unclear at this
time.

Also, of interest and interpretable from the data
provided is the degree to which the data, versus the prior
distribution, influences the Markov chain. This interplay
can be observed by comparing each parameter’s marginal
distribution histogram to the assumed prior distribution.
Looking at Fig. 6 it can be concluded that the posterior
marginal distributions of parameters S, ¢ and E are
dominated by the prior information because of the
excellent match between the MCMC parameter marginal
histograms and the prior distributions (red lines). The
opposite is true of a, band where the Fig. 6 shows that the
final posterior marginal distributions differ sigmficantly
from the assumed prior distribution. This indicates that
the data had a strong influence on these elements of the
Markov chain. That a and b are strongly influenced
by the data and strongly anti-correlated 1s intriguing but
any connection is impossible to infer given the data at
hand.
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Fig. 7: Radius versus time data and model predictions showing both the MAP and mean fit (nearly indistinguishable
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Fig. 8: Radius versus time data and model predictions for
50 random parameter sets chosen from the
composite Markov chain

CONCLUSION

The Bayesian MAP parameter estimates computed
support Taylor’s radius-time model prediction except for
significant deviations in the parametera. While the
deviation 1s small, itsi mpact is found to be significant for
the prediction of fireball radii at late times. This 1s largely
due to a’s role as the exponent of the independent time

variable, t. In addition, parameters a and b were found to
be significantly anti-correlated and as indicated by the
Markov chain, strongly influenced by the data set
analyzed. The implication of these results in unclear and
will require addition analysis to explain.

Appendix A: Trinity time-radius data

t (msec) R (m)
0.10 11.1
0.24 199
0.38 254
0.52 288
0.66 319
0.80 342
0.94 363
1.08 389
1.22 41.0
1.36 428
1.50 444
1.65 46.0
1.79 169
1.93 487
3.26 590
3.53 61.1
3.80 62.9
4.07 643
4.34 656
4.61 673
15.0 106
25.0 130
34.0 145
53.0 175
62.0 185
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