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Abstract: In this study, we propose an efficient approach of the fractional Lagrange interpolation based on new
definition of the fractional derivative. We analyze the error and the properties of the new approach based on
the new definition. Numerical applications are given to illustrate the applicability and the efficiency of the
proposed approach.
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INTRODUCTION

Recently, the fractional calculus has found in many
real applications in science and engineering such as the
control theory, fluid mechanics, bioengineering and
biophysics   (Dalir   and  Bashour,  2010;  Grace,  2015;
Jia et al., 2016; Maleki and Kajani, 2015; Soczkiewicz,
2002). Most of the fractional problems do not have
analytical (exact) solutions, so, approximation and
numerical techniques have been used (Grace, 2015;
Garrappa, 2015; Jia et al., 2016; Khder, 2015). For
example; Jia et al. (2016) introduced numerical scheme to
solve the nonlinear differential equation of fractional
order. The numerical examples they gave demonstrated
the accuracy and the efficiency of their technique. Khder
(2015) presented an approximate method for solving a
certain class of fractional variational problems. He used
the properties of Rayleigh-Rits method and the chain rule
for fractional calculus to reduce the fractional variational
problems  to  solve  a  system  of  algebraic  equations.
Maleki and Kajani (2015) presented a multi-domain
Legendre-Gauss psedudospectral to find approximate
solutions for the fractional Volterra’s Model for the
population growth of species in closed system.

Different definitions of the fractional derivatives and
fractional integrals are presented (Dalir and Bashour,
2010; Khalil et al., 2014) . Khalil et al. (2014) introduced
a new definition of the fractional derivative (conformable
fractional derivative):
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This definition satisfies Rolle’s theorem of fractional
calculus which we will use to analysis the error of the new
approach.

The problem of interpolate distinct points (x0, y0 ) to
(xn, yn) with a polynomial of degree at most n, say Pn(x)
that passes through of them is the same as approximating
a function f for which:

 i if x y , i 0, ..., n 

This  called  polynomial  interpolation  (Berrut  and
Trefethen,  2004;  Dvornikov,  2008;  Elsaid,  2010;
Hamasalh  and  Muhammad,  2015;  Zahra  and  Elkholy,
2012). Hamasalh and Muhammad (2015) presented a
study of three interpolator fractional splines. They
extended the fractional splines function with equally
spaced knots to approximate the solution of the fractional
equation. They discussed and analyzed the convergence
of the method and they estimated the error bound. The
most popular technique is Lagrange’s interpolation,
Berrut and Trefethen (2004) used to compute Pn(x) which
defined by: Let
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Where:
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To analysis the error of the α-root interpolation we
will use the above fractional derivative definition 1.

MATERIALS AND METHODS

Theorem: (Rolle’s Theorem for Conformable Fractional
Differentiable Functions) (Khalil et al., 2014). Let a>0
and f: [a, b]6R be a given function that satisfies:
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C f is continuous on [a, b]
C f is α-differentiable for some α0(0,1)
C f(a) = f(b)

Then, there exists c0(a, b) such that f(α)(c) = 0.

The proposed method: In this section we will introduce
α Lagrange’s polynomial and using it to define α root
interpolation and its properties. In addition, error analysis
will be discussed in this section.

Definition: We say Li,α(x) is Lagrange’s α-polynomial if:

   
 

αn
i

i,α α
j 0, j i i j

x-x
L x

x -x 

 

Choosing α is very important issue here to avoid
complex or undefined values, so that, the best choice for
α is α = (1/k) where k is odd positive integer. So, the root
function to interpolate distinct points (x, y ) to (xn, yn) is
given by:

   
n

n,α i i,
i 0

αP x y L x




Notice that in case α = 1 then Pn,1(x) = Pn(x) is the
classical Lagrange interpolation. Moreover, Li,α(x)
satisfies the cardinal function.

 i,α j i, j
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1, j i


   

Error analysis: Before we analyze the error of this
interpolation technique, we introduce the following
notation.

Notation: The n-times sequential fractional derivative of
f is given by:

              nf t f f f t    

Theorem: Suppose Pn,α(x) interpolates f(x) at the n+1
distinct nodes x0, x1, …, xn on [a, b] and let f(x)
continuously α-differentiable on [a, b], then:
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for some τ0(a, b).

Proof: Let:
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and:
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i

Observe that c is a constant and well defined because
h(α)(t)… 0. i(α)(t) has  n+2  roots  which  satisfies  Roll’s
theorem,   then  i(α)(t)   has  at  least  n+1 roots.  That is
i(α)(t) = f(α)(t)-Pn,α

(α)(t)-ch(α)(t) satisfies Roll’s theorem and
i2

(α)(t) has n roots and so on. Finally, in+1
(α)(t) must have

at least one root, say τ0(a,b). Thus:
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Then:
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which implies that:
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Therefore, the upper bound error of α-root
interpolation when |f(α)(x)<M and α = (1/k) for odd integer
k is:

 
n 1

n α
jJ 0

k
M max | x-x |

n 1 !


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So,  this  upper   bound  goes  to  zero   as  n64  because

for large n.
 

n 1k
0

n 1 !






RESULTS AND DISCUSION

Numerical demonstration: In this section, we will  use
α-root interpolation to solve some numerical applications
such  as  the  Fredholm  linear  integral equation, ordinary
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differential equation and fractional differential equation
and use α-root interpolation to interpolate the first
quadrant of the unit circle and compare it using different
values for α.

Example 1: Consider the following Fredholm linear
integral equation using α = 1/3 and α = 1,

(4)  
1

0

3 1
s f t s t dt

2 2
    
  

Solution: L0 = (1-s)α, L1 = sα then P1,α = f(0)L0+f(1)L1.
Using Trapezoidal rule with 2 nodes to approximate the
integral term of 4. Let si = ti = 0.1*i, i = 1, 2, we obtain
the following corresponding linear equations:
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2
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Figure 1 shows the exact and the approximate
solutions  of  example  1  with α = 1 and α = 1/3. From
Fig. 1, we conclude that when we use (1/3)-root
interpolation is more accurate than the classical Lagrange
interpolation. One can easily see that ||P1,1-f(s)||4 = 2.5 but:

 1
1,

3

P f s 0.5, s [0,1]


   

Example 2: Solve the following system:

 

 

 

1 4
1 1 1

1 4
2 2 2

1 4
3 3 3

2x 1.5
f f , f 0 1

5
1 2x
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5
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f f f 0 0

5


 


 


 

To find G(s) = f1(s)+f2(s)+f3(s); where G(0) = 1,G(0.5) =
1,G(1) = 1. We interpolate G for different values of α. We
found that:

 1
2,

3

P G s 0.03


 

     1 3 7
2, 2, 2,

7 5 9

P G s 0.026, P G s 0.057, P G s 0.091
  

     

and  ||P2,1-G(s)||4–0.15.  From  this  and  Fig.  2  we
conclude    that    for    smaller    values    of    α    gives
better  accuracy  than  the  classical  Lagrange
interpolation.

Example  3:   Interpolate   .  When   2f x 1 x ,x 0,1  
α  =  1, we obtain the classical Lagrange polynomial
P1,1(x) = 1-x. For α =1/3 we obtain:

Fig. 1: Exact and approximate solutions of example 1
with α = 1 and α = 1/3

Fig. 2: Exact and approximate solutions of example 2 for
different values of α

  3
1

1,
3

P x 1 x 

Figure 3 shows that when α = 1/3 it gives more accurate
solution than the classical one.

Example 4: Consider the following nonhomogeneous
fractional differential equation with homogeneous initial
condition:

   
1 1
2 21

D y x ,D , y 0 0
6


 
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Fig. 3: Exact and approximate solutions of example 3 for
α = 1 and α = 1/3

Fig. 4: Exact and approximate solutions of example 4, for
α=1 and α= 1/3

where,  Dσ  is Riemann-Liouville  α-derivative.  We
interpolate the approximate solution for y (0) = 0 and:

  1
y 1

3
6Γ( )

2



When α = 1, we obtain:

 1,1

1
P x x

3
6Γ( )

2



and when α = 1/3, we obtain:

  3
1

1,
3

1
P x x

3
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2
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We plot the curves of P1,1(x),  and y(x) curves in 1
1,

3

P x

Fig. 4. Notice that when α = 1/3 the interpolation is more
accurate than the classical Lagrange one.

CONCLUSION

We propose a new approach of fractional Lagrange
interpolation  called  α-root  interpolation  which  agree

with the classical interpolation when α = 1. We analyze
the convergence of the new approach and drive an error
bound. We used this interpolation to solve some
numerical applications such as the Fredholm integral
equation and a fractional differential equation. The
numerical results demonstrated the efficiency, simplicity
and the applicability of the new approach.
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