
Detecting Vehicles using YOLO from Aerial Images

Shighaf Abdallah, Omar Hamdoun and Assef Jafar
Higher Institute of Applied Sciences and Technology, Damasus, Syria

Key words: Deep learning, convolutional neural
networks, YOLO, COWC, VEDAI, OIRDS

Corresponding Author:
Shighaf Abdallah
Higher Institute of Applied Sciences and Technology,
Damascus, Syria

Page No.: 3586-3592
Volume: 15, Issue 21, 2020
ISSN: 1816-949x
Journal of Engineering and Applied Sciences
Copy Right: Medwell Publications

Abstract: Detection of vehicles from aerial images is a
challenging subject due to the large image resolution with
small targets and variant orientations. Unfortunately, there
isn’t any dataset large enough to be suitable for training
deep models. Therefore, we recognize COWC, large
aerial image dataset to use in vehicle detection. In this
project, the third version of popular YOLO is modified to
vastly improve its performance on aerial data. We trained
on a large amount of aerial images from COWC dataset.
The proposed detector was able to achieve mAP = 95%
on VEDAI dataset. It outperformed SSD and R-CNN. For
the OIRDS dataset, we achieved mAP = 67% without any
previous training.

INTRODUCTION

Detection from aerial images is one of the most
interesting fields in computer vision because it has a wide
range of applications: intelligent traffic guidance systems,
animal life observation, desertification surveillance, etc.
However, satellite images feature high resolution with
small objects in pixels. Many features and object
appearance is lost during the detection process.

Recent approaches depend on deep learning
techniques with Convolutional Neural Networks to get
better representation of images. In this project, we apply
the third version of popular YOLO for detecting vehicles
in aerial images, we trained YOLO on large number of
aerial data using COWC dataset, then we transferred the
knowledge (trained weights) and trained again on VEDAI.

Literature reveiw: Object detection methods can be
broadly categorized into: first, classical methods which
involve feature extraction followed by classification.
Second, modern methods based on deep learning
techniques.

Most feature extraction methods used HOG, Local
Binary Pattern, Scale Invariant Feature transform, etc[1, 2].

In Zhao and Nevatia[3] assumed that car is aligned with the
road direction, they combined the geometric boundary of
the car body and fed it into Bayesian network. These
features distinguish one type of car and can’t be
generalized for different types.

Cao et al.[4] used a modified version of HOG
descriptor, they first computed HOG on local cells, then
trained an AdaBoost followed by SVM classifier. Their
proposed framework can only detect cars oriented
horizontally as the HOG descriptor is a rotation variant
descriptor.

All the methods above are based on hand-crafted
features, these features cannot reach an optimal balance
between the discriminability and the robustness without
considering the details of the real world. An alternative
way is to learn features from the data automatically in a
representation fashion. In recent years the deep
convolutional neural network has yielded superior
performance in many computer vision tasks. A lot of
works which deals with problems in computer vision field
have been proposed, However, detection from aerial
views is studied less due to the difficulty of acquiring
aerial data.

3586

J. Eng. Applied Sci., 15 (21): 3586-3592, 2020

Fig. 1: The difference between anchors of the modified
YOLO with the original one

Fig. 2: Results of Videa on SSD, R-CNN, YOLO

Chen et al.[5] proposed a method for detecting cars in
satellite images. He transformed the output of the
classical DNN into several blocks of different
resolutions, the proposed network has 3 feature maps,
resulting in high accuracy. However, the data and
images were simple with urban regions which
convolve a huge number of cars and it takes 6-7 sec to
process an image.

Douillard[6] tries to encounter a challenge proposed by
NATO by detecting cars in satellite images. They used
RetinaNet with focal loss. For the training set, they used
COWC which contains very high resolution images » 13K
pixels, they sliced the large images into 1000×1000 pieces
with an overlap of 200 pixels. The architecture results in
f1 = 0.91. The sliding window technique to scan the whole
image made the model very slow.

By Carlet and Abayowa[7] the second version of
YOLO has been modified to detect small objects. Datasets
used AFVID, AF building, VEDAI. Neovision-
Helicoptor. The use of small amount of training data
result in high false positive rate.

By Tang et al.[8] they presented an architecture based
on SSD in which the bounding boxes rotate. They used a
set of default boxes with various scales on each
feature map. Meanwhile offsets are predicted for each
default box to better match the object shape.
Compared to our work, they used Vedai512 and it was
able to only achieve better match the object shape.
Compared to our work, they used Vedai512 and it was
able to only achieve 76.26% Precision rate. While our
detector was able to achieve 91% average precision
(Fig. 1 and 2).

Table 1: Our model results on three different datasets
Datastes COWC (%) VEDAI ((%)) OIRDS (%)
AP 87.56 90.65 43.28

Table 2: Results change with input resolution
Input resolution VEDAI (%) OIRDS (%) FPS (%)
256 69.58 67.59 58
416 90.65 43.28 23
608 94.67 36.98 12
832 95.11 34.54 5

Table 3: Result after changing sizes of anchor boxes with net input
resolution 416

Training set VEDAI OIRDS
Result after 91.82% mAP 45.33% mAP
modifying anchor boxes

Datasets
VEDAI: Vehicle Detection in Aerial Imagery[9]. A
collection of satellite images for object detection task. The
vehicles appear at different orientation and shapes with
variety of backgrounds: rural, urban and desert
(Table 1-3).

It has four groups: images with 1024 and 512
resolutions, RGB and infrared. All images have
GSD = 12 cmPP. The images have 9 labels (plane, Boat,
Camping car, Pick-up, Tractor, Truck, Van, Others).
Figure 3 shows some samples, Table 4 displays some of
their properties.

COWC: Cars Overhead with Context[10]. A large amount
of aerial dataset, covers six areas: Toronto Canada,
Selwyn New Zealand, Potsdam and Vaihingen Germany,
Columbus and Utah United States. The set is designed to
be difficult. It has negative examples easily mistaken for
a car: boats, trailers, bushes. Columbus and Vaihingen are
gray images while the rest is RGB images. The set
contains >300,000 training images and 75,000 testing
images. All images have GSD = 15 cmPP. This means a
car would take 20-40 pixels in the image. Big trucks
are not labeled while Van and Pick-ups are all labeled as
cars.

The image label is one pixel at the center of a car
while YOLO algorithm requires a bounding box
coordinates as label in txt file for each image. We
considered the width and height of 20 pixels. Figure 3
shows some samples. Table 4 displays some of their
properties.

OIRDS: Overhead Imagery Research Dataset[11]. The
project OIRDS constructed a set of labeled images
(1,000), suitable for computer vision research. It includes
1,800 targets, each target has >30 labels describing the
image and the target (image size, polygon coordinates,
orientation (0-359 from top of image), % shadow,
%occlusion).

Most images are of 265×265 resolution and have the
property of GSD = 15 cmPP. Figure 3 shows some
samples, Table 4 displays some of their properties.

3587

Anchors of the original YOLO

Anchors of the modified YOLO

J. Eng. Applied Sci., 15 (21): 3586-3592, 2020

Table 4: Properties for the different datasets used
Training set Image Res Vehicle size in image Total number of images GSD (cmPP) Ratio of vehicle size to image size
VEDAI 1024×1024 40-80 pixels 1,276 12.5 0.04-0.08
COWC 256×256 24-48 pixels $300,000 15.0 0.09-0.18
OIRDS 256×256 24-48 pixels 1,000 15.0 0.09-0.18 to

to 512×512 0.04-0.08

Fig. 3(a-l): Samples of the different datasets used

MATERIALS AND METHODS

Deep learning models: There are three main models for
detection of objects in real time based on deep learning
techniques:

Faster R-CNN (Region proposals Convolutional
Ceural Networks): R-CNN is built on the idea of
selective search where it chooses random windows
(regions) from the image called region proposals, the
regions are selected by segmentation process. In each of
these regions the R-CNN chooses a set of features. These
features then are injected into CNN previously trained on
classification. SVM with threshold is applied to recognize
object existence in an image.

SSD (Single Shot Detector): SSD uses VGG-16 to
extract feature-map then it detects objects using the Conv
4-3 layers. SSD does not use a delegated region proposals
network, instead it resolves to very simple method, it
computes both the location and class scores using small
convolution filters, after extracting the feature maps, SSD
applies 3×3 convolution filters for each cell to make
prediction (these filters compute the results just like
regular CNN filters).

YOLOV3 (You Only Look Once, Version: YOLO is a
general object detector with three versions, the third
version YOLOv3 has a number of improvements
compared to its predecessors, it uses the new CNN feature
extractor named Darknet-53, the number of predicted
bounding boxes rises from 5 in the second version to 9.
The most preferable enhancement is the use of three
feature maps 13×13, 26×26 and 52×52. These
improvements help in detecting small objects.

YOLOv3 was trained on MsCOCO and was able to
achieve 28.2% mAP at 45 FPS. The architecture of
YOLOv3 consists of 53 convolutional layers, most of
them are 3×3 convolutions followed by maxPooling with
one AvgPool and one FullyConnected layer, the scores
are calculated using Softmax.

The proposed method: In order to detect small
objects with aerial view, we need to train the
algorithm on aerial data and modify the model structure
to better detect small objects. However, the models
mentioned in the previous section have pretrained
weights for the MsCOCO and Pascal VOC (both
contain images with side view), aerial view is rarely
found.

3588

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

J. Eng. Applied Sci., 15 (21): 3586-3592, 2020

The proposed method is at follow:

C We train the model on COWC then we transfer the
trained weights and train again on VEDAI

C We modify the model to better detect small objects
in an image, these modifications include: change the
model’s input resolutions, change anchor boxes sizes

Small object in an image which occupies a small
number of pixels. Many features describe the object
appearance disappear after several pooling layers and the
model will not train well. Moreover, most aerial datasets
contain a small number of images which makes it even
harder for the convolutional layer to acquire the shape of
the object.

That’s why training on VEDAI at first would be
impractical. At first, we need the model to acquire the
representational features which describe the object
completely, this means we have to train the model to
detect the object before training it again to detect the same
object when it’s smaller (more height of the image).

In this model, we train at first on COWC dataset for
the following reasons: COWC dataset contains a huge
number of photos with labeled vehicles in an aerial view.
It contains 300,000 images for training, it also has many
negative examples which are hard to distinguish from
cars.

Second, for each image in this dataset makes replicas
with different orientations, this allows the algorithm to
detect cars with different directions. The third, image
resolution in COWC is 256×256 with 40 pixels describing
the car. This means the object is considered large in the
image which makes it easier to detect the representation
features accurately, this in turn reduces false positive rate.
After training the model on COWC, we use the resulted
weights as previous weights in training the model on
another dataset.

YOLOV3 modification: Yolo is not suitable for small
object detection as we’ve mentioned earlier, many object
features disappear after several maxPooling layers, YOLO
needs to be modified and fintuned using appropriate data.
Number of classes: YOLOv3 is designed to detect 80
different classes from MsCOCO dataset, we need only to
detect one class “car”, the number can be changed in the
configuration file by taking into account the number of
filters in the last convolutional layer.

Network resolution: YOLOv3 has an input of 416×416
pixels, this input reduces 3 feature maps 13×13, 26×26
and 52×52. VEDAI images have the resolution of
1024×1024 with GSD = 12.5 cmPP. If we consider the car
has 600 cm2 area (3 m length and 2 m width), the car will
occupy 48 pixels in the image, after resize to 416, it will
take 20 pixels to represent the car, meaning a vehicle may
correspond to a single point on a feature map. Increasing

the net resolution simply means increasing the width and
height of the first layer in the net, resulting in a bigger
resolution feature map and in return increasing the
number of points to represent the car. For example,
making the net resolution of YOLO equal to that of
VEDAI will result in feature map 32×32, 64×64 and
128×128, the car will correspond to several points, this
will result in good detection. However, increasing the net
resolution will increase the GPU memory usage and make
the network run slower.

Anchor boxes: The boxes sizes predicted in YOLO
greatly affect the final result, the true positive value is
calculated by the difference between these boxes and the
ground truths. The boxes are calculated by k-mean
clustering on a certain dataset, when dealing with aerial
objects we expect most of the boxes to have small size,
not squared (to fit the shape of the car).

Metrics: To evaluate the results, two metrics are used:

(1)
TP

Precis ion
TP+FP



(2)
TP

Recall
Number _ of _ objects



By drawing the precision-recall curve with respect to
threshold and by averaging all classes we determine the
mean Average Precision (mAP).

RESULTS AND DISCUSSION

We trained YOLO on COWC datasets, the learning
weight then transferred to VEDAI as previous knowledge,
since, the later contains a small number of images.

COWC images are not suited for detection, they are
designed for counting the number of cars in an image. The
labels were just a pixel point at the center of the car,
YOLO takes labels as txt file for each image with the
same name, we create the labels by searching the whole
image for the central point, we considered the width and
height of the bounding box to be 20 pixels.

The computer used is intel® core i7, 3.40GHZ,
GeForce GTX 1060 6GB. The training lasts one week
with 60,000 batches using the following parameters:
learning rate = 0.001, batch = 32. We used 120 K for
training and 30 K for testing.

The result on Utah is AP = 87.56%. we considered
one class (car), trucks and tractors were excluded, vans
and pickups were considered as car. After training on
COWC, we trained for 2000 batches on VEDAI using 1K
for training and 300 for testing and we tested the resulted
weights on OIRDS without any previous training.
Table 1 displays the obtained results (Fig. 4).

3589

J. Eng. Applied Sci., 15 (21): 3586-3592, 2020

Compared to Carlet and Abayowa[7], the best
result was AP = 66% using YOLO. Using faster
R-CNN the best result AP = 78% while our
model gave AP = 90%. Our model can process

5FPS while by Carlet and Abayowa[7] it is 3FPS. The best
result on VEDAI was AP = 76.26% using 512 image
resolution while we used 1024 images resolution in our
model.

Fig. 4(a-l): Continue

3590

(a) (b)

(c) (d)

(e) (f)

(g) (h)

J. Eng. Applied Sci., 15 (21): 3586-3592, 2020

Fig. 4(a-l): Results on three datasets used: COWC, WEDAI, OIRDS

 Training the algorithm on a large set on aerial data
has a great effect in raising the result. When we trained
YOLO on VEDAI alone, we got AP = 6.23% which is a
bad result but justified. YOLO algorithm has 53 CNNs
and millions of weights untrained for aerial view, training
with only 1K is not sufficient for those weights to be
filled properly.

Results after modifying YOLO: Table 2 displays the
result on VEDAI and OIRDS for different input
resolutions with frame per second rate. Increasing the net
for VEDAI increases the accuracy, the result is
95.11% mAP for 832×832 in comparison to 91% mAP for
416×416.

However, it’s quite the opposite for OIRDS,
34% mAP for 832×832, compared to 64% map for
2560×256. Which means increasing the net input
resolution is not always better. The model would give its
top accuracy when the net input resolution is equal
to the test image resolution (Table 2). It’s worth noting
that increasing the input resolution will increase the
memory usage of GPU which will result in less
processing time.

Changing the anchor box would requires extracting
the most frequent shapes used in the training dataset to get
these shapes, we gathered the COWC dataset and the
VEDAI training images, we use k-mean to calculate the
sizes of the boxes that are most probabilistic to use
(Fig. 1). The result is shown in Table 3.

We notice that changing the boxes size improves the
result because the predicted boxes closely match the
ground truth from image (a) that the model was able to
detect a large number of cars, Although, the YOLO
algorithm is known for its bad performance when there is
a large number of objects. In image (d), the model fails to
capture one of the vehicles, mistaken it for a truck.

In VEDAI dataset, the model manages to capture all
the objects in the image with precise, accurate bounding
boxes. But in image (h), it has mistaken the front of the
truck of being a car. However, in image (e), it was able to
detect the only car in the scene despite that the
background contains a number of objects which resemble
the shape of the car.

As for the OIRDS dataset. Which the model hadn’t
trained on before. The model has high detection rate, and
with precise bounding boxes but in image (j), the model
couldn’t detect one car in the shadows because of the
great change in the illumination.

We compare the results of our detector with other
famous detectors (Faster R-CNN and SSD), we trained
the three models (R-CNN, SSD, YOLO) on COWC
for 6000 batch, we then trained on VEDAI. YOLO was
the fastest algorithm to train, it only took 2000 training
batches on VEDAI and achieved 91%mAP at
23FPS. While R-CNN took much time to train
(4000 batches), it still slow and work on 19 FPS.
However, SSD though it gives better result 87%
mAP, it is far from real time process (only 13FPS).

3591

(i) (j)

(k) (l)

J. Eng. Applied Sci., 15 (21): 3586-3592, 2020

CONCLUSION

Training a model on aerial images has some
difficulties. First, aerial images seldom available in large
numbers due to hardness and high cost of capturing.
Second, there are multiple heights for which these images
were taken, this results in different scales for the same
object. Most of aerial data employed on one scale, gives
poor result to other scales. In this method, we use transfer
learning for training the algorithm on multiple heights by
training on big number of images on large scale (COWC),
then training the model again on smaller scale (VEDAI).
Third, aerial images feature high resolution with small
objects (small GSD), many of object features disappear
during the pooling layers, fixing this by modifying input
network resolution and changing anchor boxes sizes to
better match the small objects. Comparing our detector
with SSD and faster R-CNN showed that higher accuracy
is not only achieved but also the max speed process is
reached.

REFERENCES

01. Trefny, J. and J. Matas, 2010. Extended set of local
binary patterns for rapid object detection.
Proceedings of the Computer Vision Winter
Workshop, February 3-5, 2010, Czech Pattern
Recognition Society-CPRS, Prague, Czech Republic,
pp: 1-7.

02. Tuermer, S., F. Kurz, P. Reinartz and U. Stilla, 2013.
Airborne vehicle detection in dense urban areas using
HoG features and disparity maps. IEEE. J. Sel.
Top. Applied Earth Obs. Remote Sens., 6:
2327-2337.

03. Zhao, T. and R. Nevatia, 2003. Car detection in low
resolution aerial images. Image Vision Comput., 21:
693-703.

04. Cao, X., C. Wu, P. Yan and X. Li, 2011. Linear SVM
classification using boosting HOG features for
vehicle detection in low-altitude airborne videos.
Proceedings of the 2011 18th IEEE International
Conference on Image Processing, September 11-14,
2011, IEEE, Brussels, Belgium, pp: 2421-2424.

05. Chen, X., S. Xiang, C.L. Liu and C.H. Pan, 2014.
Vehicle detection in satellite images by hybrid deep
convolutional neural networks. IEEE. Geosci.
Remote Sens. Lett., 11: 1797-1801.

06. Douillard, A., 2018. Object detection with deep
learning on aerial imagery. A Medium Corporation,
New York, USA.

07. Carlet, J. and B. Abayowa, 2017. Fast vehicle
detection in aerial imagery. Comput. Vision Pattern
Recognit., Vol. 1.

08. Tang, T., S. Zhou, Z. Deng, L. Lei and H. Zou, 2017.
Arbitrary-oriented vehicle detection in aerial imagery
with single convolutional neural networks. Remote
Sens., Vol. 9, 10.3390/rs9111170.

09. Razakarivony, S. and F. Jurie, 2015. Vehicle
detection in aerial imagery: A small target detection
benchmark. J. Visual Commun. Image Represent.,
34: 187-203.

10. Mundhenk, T.N., G. Konjevod, W.A. Sakla and K.
Boakye, 2016. A large contextual dataset for
classification, detection and counting of cars with
deep learning. Proceedings of the European
Conference on Computer Vision, October 8-16,
2016, Springer, Amsterdam, The Netherlands, pp:
785-800.

11. Tanner, F., B. Colder, C. Pullen, D. Heagy and
M. Eppolito et al., 2009. Overhead imagery research
data set-an annotated data library & tools to aid in the
development of computer vision algorithms.
Proceedings of the 2009 IEEE Applied Imagery
Pattern Recognition Workshop (AIPR 2009), October
14-16, 2009, IEEE, Washington, USA., pp: 1-8 .

3592

