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Abstract: We study the dynamics of a
Duffin-Kemmer-Petiau (DKP) oscillator, for a scalar
boson in a (3+1)-dimensional k-Minkowski space-time.
We use the Dirac derivatives approach to construct the
k-DKP equation. We investigate the consequences of the
k-deformation on the energy spectrum of the oscillator,
and its eigenfunctions, for any value of the total angular
momentum number using a perturbation method. In
particular, we show that particle and antiparticle energies
are asymmetric, a the charge conjugation symmetry for
the k-DKP equation is broken by the deformation.
Moreover, the equivalence between this system and the
k-Klein-Gorden oscillator is discussed.

INTRODUCTION

The Duffin-Kemmer-Petiau (DKP) formalism[1] is
based on a first-order relativistic covariant equation, ̀ a la
Dirac, describing in a unified manner spin-zero and
spin-one particles and thereby providing an alternative to
the conventional second-order wave equations of
Klein-Gordon (KG) and Proca. However, the DKP theory
presents the advantage of being much richer with respect
to the introduction of interactions, since, it allows kinds of
couplings which are not possible with the Klein-Gordon
and Proca theories, albeit both theories remain equivalent
in the case of minimally coupled vector interactions[2].
This benefit makes the DKP equation an excellent tool for
physicist when studying phenologically several processes,
especially in nuclear and particle physics. As a matter of
fact, the relevance of the DKP formalism, particularly
with non-minimal coupling, for modeling physical
situations has been testified by many works. For instance,
the DKP equation permits a better fitting of experimental

data, relative to the scattering of mesons by nuclei at
medium energies, than Klein-Gordon and Proca
equation[3]. For the deuterons nucleus scattering too, this
equation produces results which accords well with the
findings of other approaches[4]. On the other hand, it has
been  found  that  the  DKP  theory  can  successfully
describe the α-nucleus elastic scattering[5], the scattering
of K+ nucleus[6] and even quark confinement within
QCD[7].

Besides, over the past years, the DKP equation has
been considered within different other contexts such as
the covariant Hamiltonian dynamics[8], the causal
approach[2], the five- dimensional Galilean invariance[9],
Bose-Einstein condensates[10], the noncommutative phase
space[11], topological defects and the generalized
uncertainty principle[12]. In addition, a lot of research has
been conducted around exact and approximate solutions
of the DKP equation in the presence of interactions with
different structures (see for example and references
therein). In particular, much attention has been given to
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the so-called DKP oscillator[13-15]. The latter is an
analogous model of the Dirac oscillator[16] which has been
introduced by Nedjadi and Barrett[13, 14]. They gave it this
name because its non-relativistic limit produces a
harmonic oscillator for spin-zero bosons and a harmonic
oscillator plus a spin-orbit coupling term in the spin-one
case.

Furthermore, recently, a great deal of importance is
being attached to studying the Klein-Gordon and the
Dirac equations in connection with quantum deformations
related to theories of quantum gravity[17, 18]. These theories
share a common feature, namely, the notion of
fundamental length scale. On the other hand, such a
distance emerges naturally within noncommutative
geometry[19, 20], therefore, in the literature, different types
of Non-Commutative Space-Times (NCST) have been
studied and their physical implications have been probed.
Among them the so-called k-Minkowski space-time[21].
The latter is a NCST of Lie algebra type with coordinates
satisfying commutation relations of the form:

(1)j k 0 k kx , x 0, x , x iax , k 1, 2, 3            

where, a = 1/k is the parameter of space-time deformation
(a is real). In this research, we shall be interested in a
particular k-Minkowski space-time which is characterized
by the usual non-deformed Poincar´e algebra as a
symmetry algebra[21]. The generators of this algebra are
the operators Mµv and Dµ where the latter are known as
Dirac derivatives and they are satisfying the usual
relations:

(2)
v v v v

v v v v v

M , D g D -g D , D , D 0

M , M g M +g M -g M -g M

     

         

       
   

These derivatives Dµ transform as a vector
representation under the action of Mµv and admit infinite
realizations in terms of commutative coordinates xµ and
their derivatives Mµ

[21]. The simplest of them is given by:

(3)A
0 0 k k

1 a
D sin (a )+i e , D , k 1, 2, 3

a 2
     

with A = -iM0 and Δ = MkMk. In this study, we consider a
k-DKP theory in this particular k-Minkowski space-time,
constructed using Eq. 3. The latter equation is used to
investigate first order effects of the k-deformation on the
energy spectrum of the (3+1)-dimensional DKP oscillator,
and the associated wave functions, for a scalar boson.

MATERIALS AND METHODS

In this study, we present the k-DKP equation and
review its essential properties. First, let us recall that the
ordinary DKP equation, describing a free particle of mass
m is given by:

(4) 2i -mc (r, t) 0
   

where, ψ is the DKP spinor and βµ are matrices fulfilling
Kemmer’s algebra defined by:

(5)vv v v+ g + g              

with gµv the Minkowski metric tensor in a (3+1)-
dimensional flat space-time: gµv = diag (+, -, -, -). The
algebra generated by the matrices βµ have two nontrivial
irreducible representations. The first is five dimensional
and corresponds to spin-zero (scalar) fields whereas the
second has ten dimensions and is associated to spin-one
(vector) fields. For the scalar sector, an explicit form of
matrices βµ is given by:

(6)
i

0 i

i
T

00
, , i 1, 2, 3

0 0 - 0

  
           

where the block elements are defined as:

(7)
0 1

1 0

 
   

 

(8)1 2 3-1 0 0 0 -1 0 0 0 -1
, ,

0 0 0 0 0 0 0 0 0

     
          

     

ρT being the transposed matrix of ρ and 0 is the zero
(3×3) matrix. Then, using the realisation (3) of Dirac
derivatives, results in the following free k-DKP equation:

(9) 0 0 ia t
t

i a
sin (a )- e +i . -m r, t 0

a 2
          

Obviously, the non-deformed free DKP equation is
recovered in the limit a60. It is worth remembering that
k-deformation breaks the charge conjugation symmetry of
the DKP equation. To show this, let us first introduce a
minimally-coupled electromagnetic field Aµ = (A0, A),
into Eq. 9. This leads to the equation:

(10)
t 0ia( -iqA0 0 2

t 0

i a
sin[a( -iqA )] - ( -iqA) e )+

a 2

i .( iqA)-m] (r, t) = 0

      
  

where, q is the electric charge of the particle. In the
non-deformed DKP theory, the charge conjugation
operator is given by: C = η5K with η5 = η0 η1 η2 η3 where
η0 = 2 (β0)2-1 and ηk = 2 (βk)2+1 for k  =  1, 2, 3. However,
the matrix η5 anticommutes with all the matrices βµ which
can be easily verified using Eq. 5. Acting then on Eq. 10
with operator C brings it into the form:
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(11)
t 0ia( -iqA0 0 2

t 0

i a
sin[a( -iqA )] - ( -iqA) e )+

a 2

i .( iqA)-m] (r, t) = 0

      
  

Because of the a-dependent contributions (precisely
the second term), re-versing the sing the electric charge in
Eq. 11 does not produce Eq. 10. This shows that the
charge  conjugation  is  no  longer  a  symmetry  for  the
k-DKP equation. Hence, the particle and the antiparticle
should now acquire different energies. This feature of the
Deformed equation remains valid even in the particular
case,  when  only  first-order  terms  in  the  deformation
parameter are retained. In that case, the free k-DKP
equation, obtained by expanding Eq. 9 in powers of a is
given by:

(12)0 0
t

a
i - +i . -m (r, t) 0

2
          

It is worth noting that, when only first order effects
of the deformation are considered, using Eq. 12, we can
still establish the continuity equation:

(13)J 0
 

where the four-current density is still given by J   

with † 0.   

RESULTS AND DISCUSSION

We investigate now the effect of the k-dependent
contributions on the dynamics of the DKP-oscillator by
considering only terms of first order in the deformation
parameter a. The DKP-oscillator system, valid up to the
first order in a, stems from Eq. 12 after performing the
non-minimal substitution:

(14)0m r 

where ω  is the oscillator frequency and ˜r is the position
vector in the non- commutative k-Minkowski space-time.
It is realized in terms of commutative coordinates as:

 (15)tr r(1-ia ) 

where only terms of first order in a are retained and r is
the position vector in the commutative space. Then, the
resulting stationary equation describing a stationary state
ψ (r, t) = e-iEtφ(r) with energy E is given by:

(16)0 0 0 2 0a
E- ( + r) +i [ + (1-aE)r]-m (r) 0

2
            
 

Before proceeding further with the solution of Eq. 16,
let us make some comments on the equivalence between
the scalar DKP oscillator and the KG oscillator under
k-deformation. We recall that the usual KG oscillator
system stems from the substitution:

(17)2 ( -m r) ( +m r)     

in the free KG equation. As a matter of fact, it is well
known that both systems are equivalent in the
non-deformed case[13, 14]. To this end, let us set:

(18)
(r)

(r) X(r)

(r)

 
    
  

with Θ a three-component vector function. Then Eq. 16
yields the following system:

(19)

2

2

a
E- ( +m r) (r) m (r)

2

a
m(r) E- ( +m r) (r)+[ -m (1-aE)r]. (r)

2

m (r) [ + (1-aE)r] (r)

       
          

    

Thus, by eliminating X and Θ in favor of n, we
obtain an equivalent Klein- Gordon equation:

(20)
 2 2 2E -aE( + r) -m (r)

[ -m (1-aE)r][ +m (1-aE)r] (r)

     
    

Equation 20 is the same equation that would be obtained
by putting the substitution:

(21)2 ( -m r) ( +m r)      

into the free k-deformed KG equation, which is given, in
terms of Dirac derivatives by:

(22)2D D -m 0
   

Let us recall here that only terms of first order in a
should be retained. We conclude then that the
k-deformation preserves the equivalence between the
scalar DKP oscillator and the KG oscillator, at least to the
first order in a. Now, by returning to Eq. 16, we can easily
verify that the total angular momentum J = L+S where, L
is the orbital angular momentum and S is the spin
operator, is still a constant of motion. Indeed, the operator
β0[L+η0ωr], related to the deformation, commutes with J.
Thus, we will use spherical coordinates and search for
solutions φ (r) of the form:
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(23)

M
nJ J

M
nJ J

M
nJL JL1L

F (r)Y ( )
1

(r) G (r)Y ( )
r

H (r)Y ( )

 
 

   
   

where YM
J (Ω) is the spherical harmonics of order J while

YM
JL1 (Ω) stands for the normalized vector spherical

harmonics. Let us remember theta the total angular
momentum for the above states is J = L. Substituting this
expression of φ which is of parity (-1)J, into Eq. 16, yields
a set of five coupled radial differential equations
involving the components FnJ = F, GnJ = G and HnJ±1 = H±1,
given by:

(24)

J
J

J a 1J 1

J J+1 1 J a -1J

-
J J

a
E- D ( )D ( ) F mG

2

D ( )F -mH -

D (- a)H + D (- )H mF-

a
E- D ( )D ( ) G

2









     
  

    

    

where: andJ a(J+1)/(2J+1), J J/(2J+1), (1-aE)      

D±
J(ω) and D±

J+1(ω) are given by:
 

(25)q

d q
D ( ) +m r, q J, J+1

dr r
     

Eliminating G, H1 and H-1 in favor of F and neglecting
terms of higher orders in a, we end up with the following
equation:

(26)

2
2 2

22 2

2 2

d d J(J+1)
-2m aEr -J -m r +

F(r) 0dr dr r

m(1-eE) +(E -m )(1+aE)

 
    

  

Equation 26 can be brought into a confluent
hypergeometric equation using the change of variable:

(27)2m r  

 
along with the ansatz:

(28)(aE-1) /2 /2F(r) e f ( )   

where, the parameter γ should be fixed, so that, to peel off
the term multiplied by 1/r2 in Eq. 26. Thus, by setting γ = 
J+1, we obtain the following equation for f:

(29)f "( )+(d- )f'( )-bf( ) = 0    

where the parameters a and b are given by:

(30)
2 2m -E 1+J 3

b (1+aE)+ , d J+
4 m 2 2

 


Subsequently, the requirement that φ (r) be regular at the
origin dictates a solution f proportional to Kummer’s
function of the first kind, F (b, d, ρ)[22]. Moreover, given
the asymptotic form of F (b, d, ρ) as ρ64, the demand that
the wave function be normalizable  is  full-filled  by 
imposing  the  condition b = -n with n a positive integer.
This constraint determines the energy spectrum as
follows:

(31)2
NE m +2 m (N+1)-2 m a(N+1), N 0, 1, 2, ...     

with the principal quantum number defined as N = 2n+J. 
Firstly, we note that, for a 6 0, Eq. 31 yields the right
energy spectrum of the non-deformed DKP scalar
oscillator[13, 14]. This reveals the consistency of our
calculations. We also note the asymmetry between
particle and antiparticle energies introduced by the
a-dependent contribution. Indeed, the correction brought
by the deformation is the same for positive and negative
energies. This fact reflects the breaking of the
charge-conjugation symmetry for the k-DKP equation. In
addition, we remark that this energy correction increases
with the number N, hence, higher energy levels are more
affected by the deformation. Moreover, it turns out that
the presence of the a-term does not alter the known
degeneracy of the oscillator energy levels. Thus we could
surmise that the k-deformation preserve the underlying
symmetry of the DKP oscillator coupling.

As for the oscillator eigenstates, since, F (n, d, ρ) is
proportional to the generalized Laguerre polynomial of
degree n, Ld-1

n (ρ), the solution f can be rewritten as:

(32)
2

rm (aE-1)r /2 1 J J 1/2 2
n n nf (r) C e L (m r )   

with Cn a normalization constant. The remaining radial
components of the wave functions can be easily obtained
from f using Eq. 24. Let us note that states with higher
energies are more impacted by the deformation, since, the
parameter a appears in the function f multiplied by the
energy of the state. Moreover, for positive energy states,
the a-dependent contribution softens the Gaussian decay
of the function f whereas the latter is hastened for states
with negative energies.

CONCLUSION

In summary, this research considers a k-DKP
equation built in k-Minkowski space-time with a
non-deformed k-Poincar´e algebra, using the approach of
Dirac derivatives. This approach guarantees the
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covariance of the resulting equation with respect to the
k-Poincar´e algebra as these derivatives transform as a
vector representation under this algebra. We have studied
the  effect  of  the  k-deformation  on  the  dynamics  of
the (3+1)-dimensional DKP oscillator for a scalar boson.
Thus, using a perturbation method, we derived the
first-order corrections to the energy levels of the oscillator
and its eigenstates, for any value of the angular
momentum number. In particular, we have found that the
deformation introduces an asymmetry between particle
and antiparticle energies, thereby revealing the breaking
of the charge-conjugation symmetry for the k-DKP
equation. In addition, we have shown that the usual
degeneracy of the oscillator energy eigenvalues is not
affected by the k-dependent contribution.

ACKNOWLEDGMENTS

The researchers gratefully acknowledge Qassim
University, represented by the Deanship of Scientific
Research, on the material support for this research under
the number (3762-alrasscac-2018-1-14-S) during the
academic year 1439 AH/2018 AD.

REFERENCES

01. Kemmer, N., 1938. Quantum theory of Einstein-Bose
particles and nuclear interaction. Proc. R. Soc.
London Ser. Math. Phys. Sci., 166: 127-153.

02. Lunardi, J.T., B.M. Pimentel, R.G. Teixeira and J.S.
Valverde, 2000. Remarks on Duffin-Kemmer-Petiau
theory and gauge invariance. Phys. Lett. A., 268:
165-173.

03. Barrett, R.C. and Y. Nedjadi, 1995. Meson-nuclear
interactions in the Duffin-Kemmer-Petiau formalism.
NuPhA, 585: 311-312.

04. Kozack, R.E., B.C. Clark, S. Hama, V.K. Mishra,
R.L. Mercer and L. Ray, 1989. Spin-one Kemmer-
Duffin-Petiau equations and intermediate-energy
deuteron-nucleus scattering. Phys. Rev. C, Vol. 40,
10.1103/PhysRevC.40.2181 

05. Ait-Tahar, S., J.S. Al-Khalili and Y. Nedjadi, 1995.
A relativistic model for α-nucleus elastic scattering.
Nucl. Phys. A, 589: 307-319.

06. Kerr, L.K., B.C. Clark, S. Hama, L. Ray and G.W.
Hoffmann, 2000. Theoretical and experimental K++
nucleus total and reaction cross sections from the
KDP-RIA model. Prog. Theor. Phys., 103: 321-335.

07. Gribov, V., 1999. QCD at large and short distances
(annotated version). Eur. Phys. J. C-Particles Fields,
10: 71-90.

08. Kanatchikov, I.V., 2000. On the Duffin-Kemmer-
Petiau formulation of the covariant Hamiltonian
dynamics   in   field   theory.   Rep.   Math.   Phys., 
46: 107-112.

09. Montigny, M.D., F.C. Khanna, A.E.D. Santana, E.S.
Santos and J.D.M. Vianna, 2000. Galilean
covariance and the Duffin-Kemmer-Petiau equation.
J. Phys. A. Math. General, Vol. 33, 

10. Abreu, L.M., A.L. Gadelha, B.M. Pimentel and E.S.
Santos, 2015. Galilean DKP theory and Bose-
Einstein condensation. Phys. A. Statistical Mech.
Appl., 419: 612-621.

11. Hassanabadi, H., Z. Molaee and S. Zarrinkamar,
2012. DKP oscillator in the presence of magnetic
field   in   (1+2)-dimensions   for   spin-zero   and 
spin-one particles in noncommutative phase space.
Eur. Phys. J. C., Vol. 72, 10.1140/epjc/s10052-012-
2217-5 

12. Chargu1i, Y., 2018. On the Duffin-Kemmer-Petiau
equation with linear potential in the presence of a
minimal length. Phys. Lett. A., 382: 949-953.

13. Nedjadi, Y. and R.C. Barrett, 1994a. The Duffin-
Kemmer-Petiau oscillator. J. Phys. A. Math. General,
Vol. 27, No. 12. 

14. Nedjadi, Y. and R.C. Barrett, 1994b. Solution of the
central field problem for a Duffin-Kemmer-Petiau
vector boson. J. Math. Phys., 35: 4517-4533.

15. Hun, M.A. and N. Candemir, 2019. Relativistic
quantum motion of the scalar bosons in the
background space-time around a chiral cosmic string.
Int. J. Mod. Phys. A., Vol. 34, No. 10.
10.1142/S0217751X19500568 

16. Moshinsky, M. and A. Szczepaniak, 1989. The dirac
oscillator. J. Phys. A. Mathe. General, Vol. 22, No.
17. 

17. Lukierski, J., H. Ruegg, A. Nowicki and V.N.
Tolstoy, 1991. q-deformation of Poincare algebra.
Phys. Lett. B., 264: 331-338.

18. Chargui, Y., 2019. On the κ-deformed Dirac
oscillator in (2+1)-dimensions. Mod. Phys. Lett. A.,
Vol. 34, No. 12. 10.1142/S0217732319500895 

19. Doplicher, S., K. Fredenhagen and J.E. Roberts,
1994. Spacetime quantization induced by classical
gravity. Phys. Lett. B., 331: 39-44.

20. Pramanik, S., M. Moussa, M. Faizal and A.F. Ali,
2015. Path integral quantization corresponding to the
deformed  Heisenberg  algebra.  Ann.  Phys.,  362:
24-35.

21. Meljanac, S. and M. Stojic, 2006. New realizations
of Lie algebra kappa-deformed Euclidean space. Eur.
Phys. J. C-Particles Fields, Vol. 47, No. 2.
10.1140/epjc/s2006-02584-8 

22. Abramowitz, M. and I.A. Stegun, 1972. Handbook of
Mathematical Functions. 10th Edn., Dover
Publications Inc., USA., ISBN: 978-0-486-61272-0,
pp: 1046.

3513


