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Abstract: The Automatic Detection and Track (ADT) radar is one of the most important types of modern radar.
This radar rapidly scans a limited angular sector to maintain tracks with a moderate data rate, on more than one
target within the coverage of the antenna. It is used for air-defense radars, aircraft landing radars and in some
airborne intercept radars to hold multiple targets in track. The aim of this research is to study the tracking
algorithm used in targets tracking such as tracking filters, tracking gate and data   association. Firstly, we will
study the basic principles of these algorithms by MATLAB tools, so we can study all advantages and
disadvantages of these algorithms, after that we will design a software tools by visual C++ to implementation
these algorithms in real time mode, so that, we can improve this algorithm and represent radar work very close
to reality. Firstly, in this research, we will use the basic filters like (α-β), (α-β-γ) and Kalman filter then in the
next experiments we can easily use this simulation to add newest filters and algorithms like Extended Kalman
Filter (EKF), Particles Filter (PF), maneuver detector algorithm, Multi Model Interaction (MMI) etc.
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INTRODUCTION

The basic tracking scenario consists of sensors which
produce noisy measurements, for example, azimuth angle
measurements as illustrated in Fig. 1. The purpose of
tracking algorithm is to determine the target trajectory
using the sensor measurements. There is additional prior
which had poor or no MTI or any other means for
reducing clutter. Its performance was a disaster when used
with poor radars. A tracking system can be designed to
recognize and eventually eliminate clutter echoes that
information on the dynamics of targets which restricts the
forms of target trajectories into those that are possible
when the laws of physics are taken into account.

ADT requires a good radar that eliminates clutter
echoes and other undesired signals. When ADT was first
introduced it was mistakenly applied to the existing radars
don’t form logical tracks but it takes time and computer
capacity which might not be available when a large
number of targets must be maintained in track. Thus, good
tracking starts with good radar that eliminates unwanted
clutter echoes and other extraneous signals. When clutter
targets cannot be completely eliminated by Doppler
processing, the ADT radar has to employ CFAR to
maintain a constant false-alarm rate.

Function  of  ADT:  The  ADT  consist  of  these  stages:
the  track  of  a  target  in  2D  can  be  determined  from

Fig. 1: Radar generates angle and range measurements of
the target and the purpose is to determine the
target trajectory

surveillance radar Plan Position Indicator (PPI) display by
plotting the target coordinates as they move when
measured from scan to scan.

At its most simple this tracking function can be
performed by a radar operator marking the face of the
cathode ray tube with a pen. This is an inaccurate process
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Fig. 2: ADT stages

and limits the number of targets that can be handled at one
time. Automatic trackers operate as follows Fig. 2
(Hanscom Air For Base):

Target detection: Target is detected as the received echo
exceeds a threshold. There is no information about its
velocity. The software constrains the uncertainty to are as
on able value for an aircraft target (large circle).

Track initiation and association: Target is detected
again displaced in range and angles but within the
uncertainty boundary. A crude velocity estimate is made
and the position where the target will appear next is
predicted. The uncertainty is still large as the position and
velocity estimates are not good, association is used when
there is more than one radar return in the tracking gate or
when we track more than one target.

Track update and smoothing: The target appears within
this uncertainty boundary and recursive tracking filters
estimates and improves both position and velocity and the
next sample prediction is made with a smaller position
uncertainty.

Track termination: The actual target position falls
outside the position uncertainty boundary because it has
accelerated and the prediction algorithm only used
position and velocity. Track is lost a new target is
detected with unknown velocity. In our research we will
focus on two type of algorithms used in target tracking
operation:

C Data association algorithm
C Tracking filters

MATERIALS AND METHODS

Technical point in target tracking: Before speaking
about tracking algorithms, we will focus on some
technical point must be conceder in target tracking.

Fig. 3: Pseudo-acceleration problems

Fig. 4: Pseudo-acceleration problems by MATLAB

Selection of coordinates for tracking: For the two
dimensional radar the natural coordinates for tracking are
the slant Range R and  azimuth θ coordinates. It is the one
generally used. However, this coordinate system has an
important disadvantage. Specifically when a target going
in a straight line with a constant velocity flies by the radar
at close range, a large geometry-induced acceleration is
seen for the slant range even though the target itself has
no acceleration. This acceleration is sometimes referred to
as the pseudo acceleration of the target. It is illustrated in
Fig. 3.

The closer the target flies by the radar, the larger is
the maximum geometry-induced acceleration seen for the
slant range coordinate. The maximum value for this
acceleration is given by Eq. 1:

(1)
2

max
c

v
=

R


Where:
v : The target velocity
Rc : The closest approach range of the target to the

radar

By studying this case using MATLAB Fig. 4:

(2)Vt Vsin 
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(3)Vr Vcos 

(4)Vr (t) = Vr max cos (t)

(5)
2

2V R min
a (t) = - sin (t) r (t)

r (t) sin (t)
 



(6)
2

3V
a (t) - sin (t) : R min Rc

R min
  

We  note  that  a  maximum  value,  obtained  at  the
cross-range Rc, θ = π/2 so: we select x, y coordinate. If
we are measuring the target Range R and azimuth angle
θ but keep track of the target using the East-North x, y
coordinates of the target then errors in the measurement
of R and θ are not linearly related to the resulting error in
x  and  y  because  the  conversion  equations  are  given
by (Eq. 7 and 8):

(7)
x R cos

y R sin

 
 

where, θ is the target angle measured relative to the x
axis. In this case how to simply handle this situation.
Basically what is done is to linearize last tow equations by
using the first terms of a Taylor expansion of the inverse
last tow equations which are:

(8)

2 2

-1

R = x +y

y
= tan

x


Tracking in the rectangular x-y coordinates has
disadvantage because of the increased computer
computation required to do the tracking, we can solve this
problem by using high speed computer.

Target state variable: Any tracking system has
observable or measurable state variable (X) at time (k)
which represent position, speed and acceleration for (x, y)
coordinates by the vector Eq.  9 (Morrison, 2012):

(9)T
k xk k yk xk ykkX x v y v a a   

Selection of tracking gate: Ramachandra (2018),
Richards et al. (2010) gating is a technique for
eliminating unlikely observation-to-track pairings. A gate
is formed around the predicted track position Fig. 5. In
our project, we will use circular gate.

Gate calculations:
Initial first gate: We calculate the first gate from
maximum   target   speed,   we   suppose   it   is   equal
(1000 m sec-1) and so, D/Δt = Max_Speed:

Fig. 5: Gate calculations

(10)2 2
2 1 2 1d (X -X ) +(Y -Y )

where,  Δt:  the  time  between  the  first  and  second. 
Fig. 5.

Second gate: We calculate the diameter of this gate from
tow target observations by calculation the distance
between the mas Eq. 10 in Fig. 5:

Third gate: The gate size can be calculated from one of
two methods: normalized statistical methods by Eq. 11
(Kolawole, 2003):

(11)2 T -1
stat k k kD y S y  

None normalized statistical methods by Eq. 12:

(12)2 2 2 2
stat m p m p scanD (x -x ) +(y -y ) <(T ×Max_Speed)

Where:
: Residual vector between prediction andy

measurement
S : Residual co-variance matrix

RESULTS AND DISCUSSION

Track and filter initiation techniques and simulation
result: Track initiation is an important function of a
tracking system. Essentially, a track initiator must be
capable of starting or initiating a track whenever a new
target appears in the scanned region. The initiation
technique is logic-based. This method is summarized
below (Konstantinova et al., 2003; Mahafza, 2000).

Initialize on the first two scans of the measurements
and estimate the apparent. Velocity with every pair of the
measurements. Let the velocity be denoted by Eq. 13:

(13)(2) (1)(2)
j k

1
v = (r -r )

T
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Fig. 6: Effect of track initiation accuracy

If this expression satisfies the speed-gating criterion
by Eq. 14:

(14)(2)
min maxv v v 

Then a track is initiated, so, predict the position the
third scan as Eq. 15:

(15)
(2)(3) (2)
jr (r Tv ) 

On the third scan, any measurement rk
(3) that falls

within the gate will extend the initiated track. Next
compute the velocity and acceleration as Eq. 16 and 17:

(16)(3) (2)(3)
j k

1
v (r -r )

T


(17)(3) (3) (2)1
a (v -v )

T


Then, we use these (r, v, a) values to start tracking
filter.

MATLAB simulation result: In Fig. 6, we see that when
there is inaccurate filter initialization, the filter take more
time (delay) to track the target.

Tracking algorithms and MATLAB results: Hanscom
Air For Base, we will study some essential type of
tracking filters and data association:

C (α-β) filter
C (α-β-γ) filter
C 2 state Kalman filter
C 3 state Kalman filter

(α-β) filter: Duan et al. (2017), Mahafza (2000) this
trackers  are  a  widely  used  two-dimensional  class  of

Fig. 7: An implementation of (α-β) tracker

time-invariant filters and it is produces on the 9th 
observation smoothed estimates for position and velocity
and a predicted position for the (n+l)th observation. The
state module of this filter is given by Eq. 18-20 (Fig. 7):

(18)          s p 0 px n = x n|n = x n + x n -x n

(19)          s s 0 px n = x' n|n = x n-1 + x n -x n
T


 

(20)       p s s sx n = x n|n-1 = x n-1 +Tx n-1

where, on the (n) radar scans:
α : Position gain factor
β : Velocity gain factor
T : Data interval
xs (n) : Estimate position
xp (n) : Predicted position

: Estimate velocity sx n

σv
2 : Measured position

Where the filter gain is (0< [α and β]<1). The filter
coefficients can be chosen on the basic of a smoothing
factor  (ζ,)  where  (0 < ζ,  <1)  (Duan  et  al.,  2017)  as in
Eq. 21:

(21)
 

2

2

= 1-

= 1-

 

 

In general, covariance matrix can be written as Eq. 22:

(22)  xx

xx

C Cxx
C n|n =

C Cxx

 
 
 



 

The reduction of measurement noise is normally
determined by the VRR ratios. This reduction ratio is the
ratio of the output variance of the smoothed position
estimate Cxx to the input measurement variance σv

2 as
follows in Eq. 23:

(23)   
2

2
xx vx

2 -3 +2
VRR = C / =

4-2 -

  


  
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Fig. 8: Maneuvering target with low smoothing factor ζ, = 0.1 (high gain)

Fig. 9: Maneuvering target with low smoothing factor ζ, = 0.9 (low gain)

The velocity reduction variance ratio is measured as
the velocity estimation output given only the noise input
as Eq. 24:

(24)   
2

2
xx vx 2

1 2
VRR = C / =

4-2 -T




   

MATLAB simulation results: In Fig. 8, we see that
when we have low smooth factor, the estimated trajectory
is not very fine but there is no a position off set.

In Fig. 9, we see that when we have high smooth
factor, the estimated trajectory is very fine but there is an
position offset.

(α-β-γ)  filter:  Duan  et  al.  (2017),  Mahafza  (2000) the
(α-β-γ) tracker produces for the kth observation, smoothed

estimates of position, velocity and acceleration. It also
produces the predicted position and velocity for the
(K+l)th observation. The state module of this filter is
given by Eq. 23-28 (Fig. 10):

(25)        s p 0 px n = x n + x n -x n

(26)          s s s 0 px n = x n-1 +Tx n-1 + x n -x n
T


  

(27)        s s 0 p2
2

x n = x n-1 + x n -x n
T


 

(28)       
2

p s s s
T

x n+1 = x n +Tx n + x n
2

 
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Fig. 10: An implementation of (α-β-γ) tracker

Fig. 11: Maneuvering target with low smoothing factor ζ,= 0.1 (high gain)

Where:
: Smoothed acceleration sx n

γ : Acceleration gain factor

Where the filter gain is (0< [α ,β, γ] <1). The filter
coefficients can be chosen on the basic of a smoothing
factor (ζ,) where (0<ζ, <1) as Eq. 29 (Duan et al., 2017):

(29)

3

2

3

1-

1.5 (1- )(1- )

(1- )

  

   

  

A large smoothing when γ = 1 while γ = 0 means that
no smoothing is present. A VRR ratio are computed is
given by Eq. 30-32:

(30) 
   
  

2

x

2 2 +2 -3 - 4-2 -
VRR =

4-2 - 2 +2 -2

      

    

(31)   
  

3 2 2

x 2

4 -4 +2 2-
VRR =

T 4-2 - 2 + -2

    

    

(32) 
  

2

x 4
4

VRR =
T 4-2 - 2 + -2



    

MATLAB simulation results: In Fig. 11, we see that
when we have low smooth factor, the estimated trajectory
is not very fine but there is no a position offset. 

In Fig. 12, we see that when we have low smooth
factor, the estimated trajectory is very fine but there is a
position offset.

Kalman filter: Morrison (2012) Musicki et al. (2004) and
Mahafza (2000) the Kalman filter is a linear recursive
estimator that minimizes the mean squared error as long
as the target dynamics are modeled accurately.
Additionally, the Kalman filter has the following
advantages (Sarkka, 2013).
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Time update Measurement update

1. State predictor:

2. Predictor of covariance matrix:

3. Kalman gain computation

4. State update

5. Covariance update (corrector equation)

P (k+1/k) =  p (k/k) +QΦ Φk k k
T

K (k) = P (k/k-1)G  [G P (k/k-1)G +R ]k k k k+1
T -1T

P (k/k) = P (k/k-1)-k G P (k/k-1)k k

x (k/k) = x (k/k-1)+K [y (k)-G  x (k/k-1)]k k
^ ^ ^

x̂ (k+1/k) = x (k/k)Φk

Fig. 12: Maneuvering target with low smoothing factor ζ,= 0.9 (low gain)

Fig. 13: Kalman filter algorithm

C The gain coefficients are computed dynamically.
This means that the same filter can be used for a
variety of maneuvering target environments

C The Kalman filter gain computation adapts to varying
detection histories including missed detections

C The Kalman filter provides an accurate measure of
the covariance matrix this allows for better
implementation of the gating and association
processes

C The Kalman filter makes it possible to partially
compensate  for  the  effects  of  miss-correlation 
and miss-association

Thus, the state prediction equation (for general case)
is given by Eq. 33:

(33)   x (k+1) = Фk x k +Bk u k +Hk w(k)

Where:
Фk : Transition state matrix
x (k) : The state at time k
u (k) : The known input or control signal
w (k) : A sequence of zero-mean, white

Gaussian process noise with covariance Q and the
measurement equation is given by Eq. 34:

(34)     y k = Gx k +v k

where, v (k) is a sequence of zero-mean, white, Gaussian
process noise with  covariance R, G measurement matrix.
The random variables v (k) and w (k)  represent the
process and measurement noise, respectively. They are
assumed to be independent (of each other), white and with
normal probability distributions. Kalman filter steps are
summarized in Fig.13.

There are two type of Kalman filter 2 state Kalman
which consider the target as Constant Velocity (CV) and
acceleration as external noise and 3 state Kalman which
consider the target as Constant Acceleration (CA) and the
variation in acceleration as external noise (Sarkka, 2013;
Musicki et al., 2004).

MATLAB simulation results:
Filters comparison result: For the same maneuvering
target trajectory and for non-maneuvering targets the filter
comparison in the Table 1 and Fig. 14 and 15.
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Table 1: Filters comparison
(α β) filter (α-β-γ) filter Kalman filter
Simple recursive Simple recursive More complex recursive
Assumes a constant-velocity Assumes a constant-acceleration All case
Coefficients are constant Coefficients are constant Coefficients are adaptive
Excellent performance for Excellent performance for Good  performance for all  targets model
non-maneuvering targets maneuvering targets
Can be used for maneuvering Not good for non-maneuvering All case
targets with suitable (α β) targets
Use constant model for target tracking Use constant mod for target tracking Use dynamic model  for target tracking
Noise not consider in targets model Noise not consider in targets model Consider noise in targets  model to minimizes the

mean squared error
Good  tracking accuracy and Good tracking accuracy and faster Higher tracking accuracy and slower than other
faster than (α-β-γ) than Kalman

Fig. 14: Kalman filter for maneuvering target

Fig. 15: Filters comparison

Data association algorithm (Konstantinova et al.,
2003): In study, we talk about most popular algorithm
called Global Nearest Neighbor Approach (GNNA)
(Kolawole, 2003).

Algorithm descriptions: This method consist of three
steps:  We  assume  the  existence  of  a  set  of  n  tracks
(gates) at the time a new observation or set of
observations is received. These observations may be used
for updating the existing tracks or for initiating new
tracks. Suppose that m measurements are received at time
index k. In a cluttered environment, m does not
necessarily equal n and it may be difficult to distinguish

whether  a  measurement  originated  from  a  target  or
from clutter. A validated measurement is one which is
either  inside  or  on  the  boundary  of  the  validation
gate   of   a   target.   We    calculate   the   Cost   [Cij]
matrix  as  following:

j

11 12 13 1m

ij 21 22 23 2m

n1 n2 n3 nm

1 2 3 ... m
1

c c c : c
2

C = c c c : c i
:

: : : : :
n

c c c : c


  

     
 
    


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The elements of the Cost matrix cij have the
following values:

ij 2
ij

100 if measurement j is not in the gate of track i
c =

d if measurement j is in the gate of track i





About dij
2, tracking residual error (distance between

center of gate i and the measurement j if measurement j is
in the gate of the track i.

The desired solution of the assignment (cost) matrix
is the one that minimizes the summed total distance. For
simple cases the optimal solution can be easily found by
enumeration. But the enumeration is too much time
consuming in more complicated cases. We choose to
solve the assignment problem by realizing the extension
of Munkres (Hungarian) algorithm. As a result we yield
the optimal measurements to tracks association. But it is
possible (due to missed detection) that some track to be
associated with measurement that is not a targets
measurement.

Algorithm example: Assume we have the track function
as in Fig. 16. Calculate the distance between center of
every gate i and its measurements j and form the cost
matrix for example in gate 2:

Distance between T4 and center of this gate = 2.12
and  then  c24 = d24

2 = 4.48.  T5  is  out  of  this  gate  so
c24 = 100 and so on. That we find the total cost matrix:

T1 T2 T3 T4 T5 T6 T7
2.25 100 6.25 100 4.48 4.48 2.89

C = 4.84 1 100 4.48 100 100 100

100 100 2.25 100 100 100 3.24

 
 
 
 
  

Find the optimal solution (lower cost) by using
Munkres    algorithm    by    MATLAB    Software    then

minimum  cost  value = c11+c22+c33 = 2.25+1+2.25 =   5.5
and   it   is    mean    that    the    data    association    will 
be   as   Table   2   and   all   other   target   will   be
canceled.

We  see  from  Fig.  17  that  99%  of  false  signal
can be canceled by using this algorithms, so, this
algorithm is useful for clutter cancelation in noisy
environments.

Computer simulation results: Djerassi and
Konstantinova (2002) now we built tracking simulation
by VC++ to simulate all the previous algorithms. The
simulation programs algorithm consist of next stages as
follow, Fig. 18.

Targets generation:  Drawing the targets trajectory and
selecting its colors.

Table 2: Targets associations result
Variables Target 1 Target 2 Target 3
Gate 1 %
Gate 2 %
Gate 2 %

Fig. 16: Data association problems example

Fig. 17: MATLAB simulation
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Targets generation Scenario generation Adjust radar and f ilter parameter

Start simulation

Select tracking f ilter Select scenario Select radar display option

Start simulation

Fig. 18: Tracking simulation flowchart

Fig. 19: Example of tracking simulation output

Scenario generation: By selecting multi targets from step
1 and determine the parameter for every target like (start
time, start speed and acceleration) and save this scenario
(we can generate unlimited number of scenario).

Adjust the radar parameter: Like (PRF, Pulse Width,
Scan Rate…).

Select tracking filter type: Alpha-beta, Kalman … and
adjust the filter parameter.

Select the scenario: From scenario editor.

Select the display option: Map, sound, targets scenario
trajectory (Fig. 19).
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Fig. 20: Example of target simulation

Table 3: Filters comparison by simulation
Filter type Events Error-mean (m) Error-Rms (m) SD (m) Filter time cost (us)
(α-β) 49 358.40 485.76 327.89 1.77
(α-β-γ) 49 264.77 367.32 254.60 3.10
2 State-Kalman 49 211.27 279.44 182.90 4.70
3 State-Kalman 49 194.05 249.78 157.27 7.00

Start simulation: It is the main job of program which
contains:

C Track initiation: calculate initial speed, gate and
position

C Target tracking: draw the target position (prediction
and estimation), target numbering and display targets
information’s

C Draw target trajectory and give a report for all target
with computer saving

C Calculate filter average-time and all tracking error

Example for filters comparison by simulation: We
select the target in Fig. 20 with start Speed = 300 m/sec,
acceleration = 3 m/sec2 and R<100 km and computer is
(COR I 3 with 4M_RAM).

Example of filter comparison by simulation: Table 3
are given below.

CONCLUSION

We studied the most important tracking algorithms
like (αβ), (αβ γ) and Kalman filters and others. The choice
of tracker depends on the complexity, accuracy and
requirements of the mission. Kalman filter is suitable for
all targets cases more than (αβ), (αβ γ) filters but more
complex than the others and needs hi speed computer to
use it. Data association algorithm (GNNA) is very
important  to  solve  targets  association  problem.
Therefore  by  using  this  simulation  we  can  add  or

modify any algorithm and will help us to study any
algorithm property and this simulation needs to add
another  algorithms  to  solve  some  tracking  problem
like maneuvering targets tracking detector or crossing
target problem and in the next generation of this
simulation we going to add more newest filters like
Extended  Kalman  Filter  (EKF),  Particles  Filter  (PF).
This  simulation  is  very  useful  for  any  one  wants  to
learn target tracking or wants to work in radar station
because it gives him a real work like real radar. Finally,
this  simulation  can  be  easley  modified  to  work  as
real  tracking  radar  by  inject  real  data  from  radar
receiver to computer (with synchronal signal) by any
computer interface hard-ware like USB, RS485 or PCI
acquisition card.
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