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Development of Mathematical Model of Ground Unmanned Vehicle Movement
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Generalova Alexandra Alexandrovna

Department of Transport Machines, Penza State University, Krasnaya Street 40, Penza, Russia

Abstract: The study proposes a mathematical model of the Ground Unmanned Vehicle (GUV) which allows
to determine the trajectory in two-dimensional coordinates and orientation angles of the unmanned vehicle. The
moment reachability set for a third-order nonlinear controlled system, often called the “Dubins machine” is
investigated. The object moves on a plane with a constant linear velocity and asymmetrically specified
restrictions on turns to the right and to the left. The statement about the number and nature of control switches
leading to the boundary of the reachability set is proved.
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INTRODUCTION

In applied works based on mathematical control
theory, a model of a controlled object called the “Dubins
machine” is very popular. This model is given by a
nonlinear system of differential equations of the third
order. Two phase variables characterize the geometric
position of the controlled object on the plane, the third
variable-the angle of direction of the velocity vector. The
speed value is considered constant. The scalar control
action constrained by the geometric constraint determines
the instantaneous turning radius.

“Dubins machine” a controlled object (car or plane)
with a simple model of movement in the horizontal plane.
In 1957, the American mathematician L. Dubins
published a theoretical research (Dubins, 1957) on a line
of shortest length with a limited radius of curvature
connecting two points on a plane with a given direction of
exit from the first point and a given direction of entry into
the second.

The results obtained by L. Dubins were very useful
in   the   study   of   objects   with   a   limited   turning
radius  and  constant  speed  of  movement.  That  is  why
such  objects  became  known  as  the  Dubins  machine.
Later  it  turned  out  that  in  1889  the  Russian
mathematician A. A. Markov studied close questions in
the research (Markov, 1889) devoted to the problems of
laying railways.

Dynamics of the simplest car was used by R. Isaacs
in researches on differential games (Isaacs, 1965, 1967).
The Dubins Model is used in the control of wheeled
robots (Jean-Paul, 1998) for dispatching calculations in
civil aviation as well as in applied works on the
construction of trajectories of unmanned aerial vehicles in

the horizontal plane (Meyer et al., 2015). In the book
(Berdyshev, 2015) Y. I. Berdyshev used the model
Dubins for optimal bypass of points in the plane.

The aim of this research is to develop a mathematical
model of the movement of an Unmanned Vehicle (GUV)
based on the Dubins machine as well as optimization of
movement by the criterion of time.

MATERIALS AND METHODS

To set the trajectory of the GUV, it is necessary to set
the coordinates of the control points and the coordinates
of the velocity vector at each such point. The calculation
algorithm based on the obtained data on the position and
orientation of the GUV should generate a trajectory
passing through the point of the current location of the
GUV and the next checkpoint.

This trajectory has a number of natural limitations.
First, it must be a continuously differentiable function
(because the GUVcan not move in jumps) and  secondly,
at each point of its curvature should not exceed some
predetermined value (since any vehicle has a limited
turning radius).

To describe the dynamics of the movement of the
machine Baton in this study, all movements are described
through the composition of internal symmetries. Matrices
and vectors are indicated in bold. The subscripts assigned
to the start point of the movement with the upper end
point of the movement, for example βf or Ku

d except the
index which clearly indicates the start or end point, for
example, the expression (KB-KA) should be understood as
the expression (Kd-Ku) or (Ku-Ku) where the value with
the lower index KB correspond to the upper indexes Kd or
Ku.
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Fig. 1: Dubins machine

Fig. 2: Turning circles Wa and Wb of GUVat points A
and B

In  Fig.  1,  points  A  and  B  are  the  start  and  end
points   of   the   movement,   PA   and   PB   are  the
orientation   vectors   of   the   GUV   at   these   points.
The   next   step   in   building   models   of   the
movement  is  to  build  circles  of  rotation  W  (with
radiuses  Rl  and  Rr),  relating  the  vectors  in  the  initial
PA  and  PB  end  point.  For  each  point  and  direction
there  are  two  circles  of  rotation  GUV,  denote  the
position  of  their  centers  Rl  and  Rr  (Fig.  2)  for  point
A  (Rl  and  Rr  for  point  B):

(1)
lR R M P

2

    
 

(2)
rR R M - P

2

    
 

where, R is the scalar value of the specified turning
Radius (R = RA or R = RB), M(α) is the linear operator of
rotation on angle α:

(3) 
cos sin

M
sin cos

   
     

 the normalized vector P, the vector orientation of theP

vehicle (PA or PB):

(4) P
P

P


Fig. 3: Constructing tangents to circles of rotation

Table 1: Composition of the circles of rotation
Values Rl Rr

Rl Rl·R
l Rl·R

r

Rr Rr·R
l Rr·R

r

The compositions of the centers of the circles R for
a pair of points A and B are given in Table 1 and the
symbol “C” indicates the composition of objects standing
to the left and right of it.

For  the  2-dimensional  Dubins  Model,  the
following  result  is  known:  if  two  points  are  far
enough   away,   the   shortest   path   is   one   consisting
of   a   segment   of   a   radius   circle,   a   straight   line
and  another  segment  of  a  radius  circle.  It  turns  out
that  the  desired  trajectory  is  divided  into  three
segments:   the   concatenation   of   two   circles   and   a
line  segment.  Each  composition  of  rotation  circles  W
has  one  of  four  paths  LA`

B` (indicated  by  different
colors in Fig. 3) formed by tangent lines to,
simultaneously, two circles.

It is easy to notice that the vector K is symmetric
with respect to the line LA

B passing through the centers of
rotation circles and  is in two symmetric states within one
rotation circle, let’s call them Ku and Kd, respectively
(Fig. 3):

(5)  � B

AA A KK R M L   

(6)

u dB
A A B u d

A
B

d uB
A A B u d

A

R
K , K K K VK

R
K

R
-K , K K K VK

R

    
   

where, is the normalized vector of the distance� B

AL

between the centers of the circles LA
B given by the vectors

RA and RB:

(7)   B
A B AL B+R - A+R

(8)
� �

BB A
A

A B
B
A

L
L -L

L
 
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Rl Rr

Rl

Rr Lr

l
Ll

l Ll

r

Lr
r

Wf Wb

Wf

Wb Wb

f
Wf

f Wf
b

Wb

b

Ku Kd

Ku

Kd Kd
u

Ku
u Ku

d

Kd

d

Еhe angle σK between the vector K and the vector ,� B

AL

depend on the indices K and inherits its indexing:

(9)

u A B
u B

A

d A B
d B

A

d A B
u B

A

u A B
d B

A

R -R
a cos

L

R -R
-a cos

L

R +R
a cos

L

R -R
-a cos

L

  
   

   
  
   

   


 
      


 
      

It should be noted that since, LA
B is formed from the

vectors RB and RA it inherits their indexing:

Assuming that M (-π/2) = -M (π/2) and Eq. 7, the
following relations (Eq. 10):

(10)

l r r
l l

r r
l r r

r l l
r r

l l
r l l

L +2 R L

L -2 R L

L +2 R L

L -2 R L

 

 

 

 

Then the path of rectilinear movement between the
two circles turn WA and WB (specified by vectors KA and
KB from RA and RB, respectively) are as follows:

(11)   B
B B A AAL B+R +K - A+R +K`

`

Given  K  =  KB-KA  and  Eq.  7,  you  can  rewrite  Eq. 11
as follows:

(12)B B
AAL L +K.`

`

The compositions of vectors K have the following form:

That is LA`
B` inherits indexing from K (13):

(13)

u B u
u A u

d B d
u A u

u B u
d A d

d B d
d A d

L L +K

L L +K

L L +K

L L +K









Fig. 4: Constructing tangents to circles of rotation WGUV

Given Eq. 5 and 6, the expression for K takes the
following form:

(14)

    �

    �

    �

    �

B
u u

Au B A u

A
d d

Bu B A u

A
u u

Bd B A d

B
d d

Ad B A d

K R -R M L

K R +R M L

K R +R M L

K R -R M L

   

   

   

   

Based on Eq. 14 the following relations between the
vectors K are valid:

(15)

 

 

 
 

u u u uB A
d u u d

B A

d d d dB A
d u u d

B A

d u u d
d u u d

d u u d
u d d u

R +R
M + - K K

R -R

R -R
M + - K K

R +R

M - K K

M - K K

     

     

   

   

The next step in the construction of the trajectory of
the GUV is the construction of all possible tangents to the
circles of rotation W. Figure 4 shows examples of such
tangents.

Since,   the   points   start   and   end   positions   A
and   B   lie   on   the   circle   of   rotation   WA   and   WB

they   allow   movement   in   two   directions:   front and
rear   Wf   speed   Wb,   thus,   forming   four   possible
trajectories   for   each   of   the   known   pathways
expressed in the following compositions:

Thus,   for   W   fair   the   following   relationship   16
and   17:

(16)
f b

f b

W +W 2

W +W 2

 
 
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Fig. 5: Motion combination  matrix (A-Movement
around  point  A,  B-Movement  around  point  B,
l-Move left, r-Move right, u-Direction of the
upward  motion  vector,  d–direction  of  the
motion vector to down, f–forward movement,
b–reversing)

(17)

     

     

f z z

b z z

R K
W a cos , sign P, R sign K, R

R K

R K
W a cos , sign P, R sign K, R

R K

  
      


       

Where:
+R, K, : The scalar product of vectors R and K
[P, R]z : The z component of the vector product of the

vectors P and R

For the above compositions it is possible to write the
length of the assumed trajectory when moving from point
A to point B (Fig. 5):

(18)B A B B
A A A BS S +S +S ` ` `

` `

Then, given the features of the sites, the value of the
traveled path SA

B:

(19)
B A B B
A A A BA BS R + L +x R   ` `

` `

where, βA
A` is a sector of a circle A, overcome when

moving along the planned trajectories:

(20)
A

A A fA
A A

A A b

, W

, W

    
  

`
`

`

xB`
B– sector of a circle B overcome while moving in

the intended trajectory x_(B`)^B-sector of a circle B
overcome while moving in the intended trajectory:

(21)
B f

B BB
B B b

B B

, x W
x

, x W

  
 

`
`

`

Studies have shown that there are 64 possible
trajectory and each trajectory is of length, travel time can
have a number of stops different from zero, etc., there are
different variants of the movement: of the 64 possible
trajectories 32 can save the initial orientation and change
it to 32; 32 trajectories suggest movement without
stopping and 32 with the stop 32 to allow for the reversing
between the stages of rotation and 32 allow movement
forward course. The final structure of the motion
combinations is shown in Fig. 5.

RESULTS AND DISCUSSION

To optimize the performance and search for
equilibrium points, first of all it is necessary to determine
the time of movement along the trajectory:

(22)A B B
A A Bt t +t +t ` `

` `

Where:
tA

A` : The time of motion along the circle A
LB`

B : The time of motion along the B
LA`

B` : Time of movement along the segment tangent to
the circles АиB

In the simplest case when the acceleration time to the
maximum speed vmax and the braking time to a stop are
negligible compared to the total travel time t, we obtain
the following relations: forward speed:

(23)f maxv v

Reversing speed:

(24)b fv const v 

Since, the points of the initial and final position lie on
the rotation circles, they, together with the vector K,
divide each circle S into two parts, forming two angles-θ
and ω (Fig. 6) and  the angle θ corresponds to the forward
motion and  the angle ω corresponds to the reverse
motion. Since, θ by definition always coincides with the
direction of forward motion we have:

(25)
A A

f
f

R
t

v

 


(26)
A A

b
b

R
t

v

 


where, tf and tb the time of movement (rotation) along the
circle A when driving forward and reverse, respectively.
In this case, we have an equilibrium value θ depending on
the velocity ratio (the value θ in this case is equally
characteristic of the rotation circles A and B):
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Fig. 6: Draw angles of the direction of movement

Fig. 7: Scheme of the time factor t of the forward motion
on a circle

(27)
f

f b

v
2

v +v
  

(28)
b

f b

v
2

v +v
 

Considering characteristics of the trajectory, given a
uniform and uniformly accelerated motion, the presence
of phases of acceleration and deceleration at each of the
sites and  the restrictions start, end and  maximum speed
have motion (Fig. 7):

(29)1 2 3 4t t +t +t +t

Where:
t : The  total  time  of  forward  or  reverse motion

(tA
A` = tf or tA

A` = tb) on some section
t1 : Reverse braking time (if at the initial time the

vehicle has a velocity vector accompanying the
reverse movement)

Fig. 8: Scheme determining the time of movement of a
ground-based GUV along a trajectory

t2 : Forward acceleration time
t3 : Forward speed
t4 : Forward braking time

Given the features of the problem, you can change
the intervals that determine the time of movement along
the path as  follows:

(30)t + +   

Where:
t : Total time spent on overcoming all sections;
ψ : The section of preliminary braking and subsequent

acceleration, i.e., the length of the braking distance
is equal to half the distance Sψ traveled in the region
ψ and is equal to the acceleration distance to speed
v0 (in the explanatory diagram, this is shown in the
form of a region composed of two triangles having
the same area). If vψ$0, then v0 = vψ, Sψ = 0, ψ = 0,
since, preliminary braking is absent;

τ : Section of pure acceleration or braking (depending
on the ratio of speeds v0 and v1)

γ : Section acceleration to maximum speed followed
by braking to speed v1

As a result of the presented in the research, a scheme
is developed and proposed that determines the time of
movement  of  the  ground  GUV  along  the  trajectory
(Fig. 8). In accordance with the proposed scheme of
motion developed a mathematical model of the movement
of ground GUV. The full path of the GUV movement can
be represented as:

(31)S S +S -S  

Where:
S : Total distance travelled
Sτ : Total distance traveled on the site τ
Sγ : Total distance traveled on the site γ
Sμ : Normalizing distance, when exceeding the

maximum speed vmax
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The pre-braking section is described by the following
dependencies:

(32)0 0

v , v 0

v a
v , v <0

a

 

 





  


Where:
v0 : The speed that the vehicle achieves in ψ during

acceleration or is the initial speed, the direction of
this speed coincides with the direction of movement
along the intended path

vψ : The  initial  velocity  of  the  vehicle,  it  is  either
co-directional with the movement along the
intended trajectory or counter-directional with it

a0 : Acceleration during acceleration along the intended
trajectory, a0 = const

aψ : Acceleration during braking on the site 

The travel time ψ is described as:

(33)
0

0

a + a a
v , v <0

a a a

0, v 0

 
 

 



  
          



From Eq. 33, it follows that the full path length Sψ on
the site prior braking ψ can be defined as:

(34)

2v
, v <0

aS

0, v 0











 
 

The time τ spent by the GUV for acceleration
(deceleration) can be calculated as: 

(35)

1 0
1 0

0

0 1
1 0

1

v -v
, v v

a

v -v
, v <v

a

 
  



Where:
τ : Time to overcome the eponymous section
v1 : The final velocity of the vehicle to overcome all

sections
a1 : Acceleration during braking to the speed v1 with the

current movement, it is aligned with the direction of
movement along the assumed path

The full path of the traversed path Sτ on the section τ
and the velocity vτ(vτ#vmax) are defined as:

(36)1 0v +v
S

2   

(37)0 1 0

1 1 0

v ,v <v
v

v ,v v

  

The last section in scheme 8 is the section of
acceleration time γ to the maximum speed, followed by
braking to the speed. For this phase characteristic
difference H between the maximum speed developed on
a plot of γ and the maximum speed vτ develop at the site
τ. Analysis of scheme 8 showed that this difference can be
calculated as follows:

(38)
1 0

1 0

a a
H

a +a


  

The maximum velocity vH which can develop GUV
within the framework of this model on the site γ can be
defined as:

(39)Hv v +H

The distance Sg that the GUV can cover when
accelerating to the maximum permitted speed vmax and
braking to the speed v1 is determined from the following
ratio:

(40)
2 2
max 1 0

g
1 0

v -v a +a
S

2 a a
 

  
 

where,  Sg  the  maximum,  theoretically  possible  within
the   model,   distance   covered   by   the   fastest
acceleration  to  the  maximum  allowed  velocity  vmax

and  braking  to  speed  v1.  Difference  h  (Fig. 8)
between   the   maximum   achievable   speed   vH   and
the   maximum   allowed   speed   vmax,   h$0   can   be
defined as:

(41)
H max g

g

v -v , S S +S
h

0, S<S +S





 


Normalizing  distance  Sμ,  limiting  the  traversed
path   within   the   movement   with   the   maximum
allowed   speed   vmax   and   full   length   Sγ   distance
traveled  on  a  plot  of  γ,  when  acceleration  to
maximum  attainable  speed  vH  and  subsequent
deceleration to final speed v1 are determined from Eq. 42
and 43:

(42)
h

S
2   

623



J. Eng. Applied Sci., 15 (2): 618-625, 2020

(43)
H

S v +
2 

     
 

From all the above relations, we can obtain the time
of motion γ as a component of the total time t:

(44)1 0v +v H h
+ v + - -S 0

2 2 2
        
 

Substituting in Eq. 44 the necessary relations and 
synchronizing them under the conditions, we have the
following set of relations:

(45)

 

 

2 2
max 1 01

1 0 g
0

2 2
0 max 0 1

1 0 g
1

2 2
2 0 1 1 0

1 1 0 g
0 1 0

2 2
2 0 1 0 1

0
0 1 1

v v -vv
+ + -S 0, v v , S S +S

2 2 2 a

v v v -v
+ + -S 0, v <v , S S +S

2 2 2 a

a a v -v
+ v + -S 0, v v , S<S +S

2 a +a 2 a

a a v -v
+ v + -S

2 a +a 2 a







            
           
 

     
  

 
    

  
1 0 g0, v <v , S<S +S












 


(46)
2 2 2 2
max 1 max 0
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To shorten the entry, we introduce the following notation: 
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Then, taking into account relation (32), we have the
following set of solutions:
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It is easy to notice that the desired time interval γ is
the solution of a linear or quadratic equation, so, the total
time t:
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Features  of  the  optimal  trajectory  of  the  vehicle
with  a  constant  turning  radius,  suggest  movement  at
a constant speed. Therefore, to remain within the
framework of this model, it is necessary to take into
account the angle of turning the wheels Θ during
acceleration  (or  braking).  For  small  acceleration
values, the following ratio can be used (Selifonov et al., 
2007): 

(47)
2

1 2

1 2

G GL v
- -

R g R K K

 
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  
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Where:
Θ : Wheel turning angle
L : Vehicle base
V : Vehicle center of mass Velocity
R : Vehicle turning Radius
(G1/K1-G2/K2) : The coefficient of the understeer
g : Gravitational acceleration

Given Eq. 47 the maximum speed Vmax are
developing in the area of the turn during acceleration or
deceleration before depending on the maximum angle of
rotation of the wheels Θmax is as follows:

(48)
 max

max
1 2

1 2

L- R g
V

G G
-

K K

 


Naturally, Vmax may not satisfy the condition of
skidding and/or overturning, so as Vmax you should choose
the minimum speed that meets all the conditions.

CONCLUSION

A mathematical model of the GUV movement based
on the Dubins machine is developed which  allows
determining the motion vector of a wheeled vehicle. It is
established that there are 64 combinations of motion to
construct the trajectory of the GUV. A scheme is
developed that determines the time of movement along
the trajectory and allows to determine the characteristics
of the movement of the ground GUV. The proposed
optimization criterion time and the determination of
equilibrium points, given the 64 combinations of the
trajectory.
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