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Validation using Zebris FDM System
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Abstract: In this study, we present an insole with three Force Sensing Resistors (FSR) one each for toe, hallux
and heel which provides quantitative gait analysis outside the confinement of traditional lab at a low cost. The
aim of the study was to explore the validity and reliability of the insole in a healthy individual. Gait data were
collected from a healthy individual at three different paces of walking. Validation of the data was performed
with zebris FDM system. Through a series of analytical tests we tested the accuracy and validated the
performance of FSR insole. With the future scope being, developing an algorithm for a smartphone app that
acquires the acceleration signal from the insole for users to assess the abnormality of gait.
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INTRODUCTION

Gait Analysis (GA) is an important diagnostic
measure to investigate the pattern of walking to
characterize human locomotion (Whittle, 1996;
Johansson, 1975). Traditional gait analysis is generally,
carried out in a gait lab with equipped force and body
tracking sensors which needs a trained medical
professional to interpret the results. This procedure is
tedious, expensive and unfeasible. It has been widely used
in various applications such as medical diagnostics,
rehabilitation and sports (Li et al., 2009; Bianchi et al.,
2010;  Baker,  2006;  Huang  et  al.,  2014;  Xu  et  al.,
2012a, b).

Some  typical  examples  are  the  use  of  conducting
foot switches (Zijlstra et al., 1995; Nevill et al., 1995),
pressure-sensitive foot switches (Eastlack et al., 1991),
dynamometric platforms (Nilsson and Thorstensson,
1987) or stereo-photogrammetric systems (Zijlstra and
Dietz, 1995) that are the traditional and more reliable
methods  to  assess  the  spatio-temporal  gait  parameters
and the several gait phases. The GA performed with
biomechanical and foot-pressure sensors is used to assess
and if necessary, correct the gait and posture of an athlete
or an injured person alike (Klenerman et al., 1988;
Ounpuu, 1994; Zatsiorky et al., 1994). Geriatrics makes
extensive use of GA to assess and predict the risks
associated with mobility in the elderly (Rodgers, 1995;

Wolfson et al., 1990; Berg et al., 1992; Wrisley and
Kumar, 2010). One such method to analyze gait is based
on the multi-camera motion capture system and a platform
which is capable of measuring ground-reaction forces
(Patrick and Keenan, 2007; Aminian et al., 2002). When
the subject/patient walks along the platform, his motion
patterns are captured by the camera and the sensors
embedded  onto  the  floor  (Salarian  et  al.,  2004; 
Moore  et  al.,  2007).  However,  this  type  of  motion
capture system is usually restricted to indoor use as
motion  capture  camera  often  rely  on  infrared
reflective  markers  that  will  be  affected  by  sunlight.
The  high  cost  of  the  equipment  also  makes  gait
analysis prohibitive for wide adoption. Moreover, using
the data captured by these devices, the trained expert
needs  to  be  analyzed  by  trained  experts  manually
(Zijlstra, 2004).

With the development of wearable sensors, gait
analysis becomes quite inexpensive and the monitoring
can be performed in comfortable and realistic settings,
outside the lab. There has been prior research on using
sensors like accelerometers and gyroscopes to analyze
various gait features (Dejnabadi et al., 2006). Bae et al.
2009 designed a Force Sensing Resistive (FSR) sensor
array based gait analysis and Chen et al. (2011) proposed
a longitudinal motion assessment method using inertial
sensors on cerebral palsy patients Liu et al. (2011).
Researchers  have  been  working  on  designing  a pair of
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instrumented insoles with piezoresistive pressure sensor
and three-axis accelerometers which can measure,
pressure distribution of the foot during various gait phases
(Martinez-Marti  et  al.,  2014).  Recently,  Xu  et  al.
(2012a, b) proposed an insole which consists an array of
48 pressure and motion sensing sensors to analyze gait
parameters. Although, these methods help us understand
the walking pattern efficiently, they cannot address the
problem of analyzing gait cycle and its features accurately
in real-time studies of foot pressure measurement and
application of insole sensor in measuring plantar pressure
was published.

Gait analysis is an important tool to detect fall risk
and fall prevention in ageing population. The wearable
gait analysis system, mentioned in this paper can analyze
gait parameters such as stance phase, load response, mid
stance, pre-swing. Swing phase, double stance phase
stride time, step time and cadence step/min by analyzing
pressure between the foot plantar surface and the shoe
insole.

This insole can be used to study the gait parameters
in Parkinson’s patients. Parkinson’s Disease (PD) is a
chronic and progressive hypokinetic disorder  of  the CNS
caused by basal ganglia dysfunction. Four major motor
symptoms  of   PD   are   resting   tremor   of   4-6   Hz
(the most manifest symptom), rigidity (stiffness in
muscles), bradykinesia (slow physical movement),
postural instability (loss of postural reflexes) (Xu et al.,
2012a, b)). Other symptoms may include physical fatigue,
festination, small shuffling steps and decreases in both
arm swing and walking speed. The research group led by
Jankovic (2008), Blin et al. (1990) and Sekine et al.
(2002). Applied the wavelet-based fractal analysis and the
time-frequency matching pursuit algorithm to the
acceleration signals recorded from PD subjects during
climbing stairs and walking along a corridor. In
Parkinson’s  disease,  SVM  has  been  used  to  estimate
the  severity  of  tremor,  bradykinesia  and  dyskinesia
(Patel et al., 2009). Studies of gait in PD using SVMs
have been limited to plantar pressure data (Jeon  et  al., 
2008) and ground reaction forces (Yang et al., 2009).

MATERIALS AND METHODS

System overview
Framework: Identifying normal and pathological
walking patterns is a complicated process and requires
analysis of various gait features like cadence, stride
height, stride length and speed which are very basic
features . In that way, gait is a cycle movement which can
be categorized by two main phases: stance phase and the
swing phase. The first corresponds to the period of time
in which the foot is in contact with the ground and it starts
when the heel first strikes the floor, lasting until the
moment the toe becomes the last contact point (toe off).
The swing phase, on the other hand, represents the lack of
contact with the floor and it starts when the toe  ceases  to

Fig. 1: Three phases in gait cycle

Fig. 2: Overview of the mechanism

be in contact with the ground, persisting till the moment
the heel strikes the floor again, then starting a new gait
cycle. For an individual with no abnormalities, the stance
phase  (at  a  normal  pace)  corresponds  to  about  ~62%
of  the  entire  gait  cycle  (Klenerman  et  al.,  1988;
Moore et al., 2007).

In context to medical application, each gait cycle is
divided into three phases: contact, mid stance and
propulsive phase as shown in Fig. 1.

Our main goal is to design an insole which is capable
of identifying the gait stage in real-time and detect various
gait parameters, required to analyze human gait. To
address this, we came up with an overall system design
which is divided into three major parts, the insole
hardware design, data acquisition  and transmission using
Bluetooth module and finally the data processing and
graphical user interface as shown in Fig. 2.

Insole: The insole has 3 FSRs one each for toe, hallux
(first metatarsal) and heel as shown in Fig. 3. The FSRs
are placed at toe, first metatarsal or hallux and heel of the
foot. These points are chosen because of the natural
anatomy of the foot as they face the most pressure during
a  gait  cycle.  The  prototype  has  sensor  inlayed  insole,
a Microcontroller   Unit   (MCU):   Arduino   nano   with:
pull-down  resistors  and  header  pins  to  connect  MCU
and  other  components,  a  Bluetooth  module:  HC-05
(for wireless transmission of data) and 5V power for each
foot. The block diagram of the connection is shown in
Fig. 4.
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Fig. 3(a-b): Insole with positioning of the 3 FSRs (toe, ball, heel)

Fig. 4: Block diagram of the circuit connection

Experimental   protocol:   The   subject   performed   10
walks   at   different   paces:   normal,   fast   and   slow
paces.    Each    walk    lasted    for    3    min.    The 
validity   of   the   gait   parameters   measured   was
tested   against   FDM-S   pressure   plate   as   shown   in 
Fig.  5.

The zebris measuring system due to the very large
measuring areas of 144×56, 208×56 and 304×56 cm, the
dynamic force and pressure distribution under the feet can
be recorded from several contacts with the ground and
analyzed (Yang et al., 2009; Brunner, 2011). Many
previous studies have used zebris as the benchmark
(Brunner, 2014; Rueterbories et al., 2010; Romkes et al.,
2005).

Fig. 5(a-b): Experimental setup

RESULTS AND DISCUSSION

Statistical analysis: Mean of every gait parameter were
calculated  at  each  pace  and  for  every trial. ANOVA-2 
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Table 1: Gait parameter comparison-normal walk
Phases Zebris gait FSR gait Error Error (%)
Stance phase L (%) 66.40 67.60 1.20 1.70
Stance phase R (%) 65.50 66.20 0.70 1.05
Load response  (%) 16.00 16.41 0.41 2.40
Mid stance R (%) 33.60 32.70 0.90 2.70
Pre -swing L (%) 16.00 16.40 0.40 2.40
Pre-swing R (%) 16.00 16.50 0.50 3.00
Swing phase L (%) 33.60 32.80 0.80 3.40
Swing phase R (%) 34.50 33.90 0.60 1.70
Double stance phase (%) 31.90 32.40 0.50 1.50
Stride time (sec) 1.19 1.26 0.07 5.50
Step time L (sec) 0.59 0.61 0.02 3.20
Step time R (sec) 0.60 0.65 0.05 7.60
Cadence (step/min) 101.00 95.00 6.00 6.30

Table 2: Gait parameter comparison-slow walk
Phases Zebris gait FSR gait Error Error (%)
Stance phase L (%) 65.10 66.40 1.30 1.90
Stance phase R (%) 66.70 67.10 0.40 0.50
Load response (%) 16.30 16.80 0.50 2.90
Mid stance R (%) 34.90 34.30 0.60 1.70
Pre-swing L (%) 16.30 16.80 0.50 2.90
Pre-swing R (%) 15.50 15.99 0.49 3.00
Swing phase L (%) 34.90 33.90 1.00 2.90
Swing phase R (%) 33.30 33.10 0.20 0.60
Double stance phase (%) 31.80 32.50 0.70 2.10
Stride time (sec) 1.29 1.39 0.10 7.19
Step time L (sec) 0.66 0.70 0.04 5.71
Step time R (sec) 0.63 0.69 0.06 8.60
Cadence (step/min) 93.00 86.00 7.00 8.13

Table 3: Gait parameter comparison-fast walk
Phases Zebris gait FSR gait Error Error (%)
Stance phase L (%) 65.7 66.20 0.50 0.70
Stance phase R (%) 63.8 64.30 0.50 0.70
Load response (%) 15.2 15.80 0.60 3.70
Mid stance R (%) 34.3 34.80 0.50 1.43
Pre-swing L (%) 15.2 15.90 0.70 4.40
Pre-swing R (%) 14.3 14.77 0.47 3.18
Swing phase L (%) 34.3 34.10 0.20 0.58
Swing phase R (%) 36.2 35.90 0.30 0.83
Double stance phase (%) 29.5 30.20 0.70 2.31
Stride time (sec) 1.05 1.12 0.07 6.25
Step time L (sec) 0.52 0.55 0.03 5.45
Step time R (sec) 0.53 0.57 0.04 7.01
Cadence (step/min) 114.0 107.00 7.00 6.50

Table 4: Stance phase
Stance phase (walk) FSR (%)  Zebris (%)
Normal 0.676 0.664
Slow 0.664 0.651
Fast 0.662 0.657

Table 5: ANOVA-2 factor for stance phase
Source of variation df F p-values F crit
Rows 2 9.491228 0.095318 19
Columns 1 15.78947 0.057889 18.51282

Table 6: F-test two-sample for stance phase left
Parameters FSR gait Zebris gait
Mean 66.73333 65.73333
Variance 0.573333 0.423333
Observations 3 3
df 2 2
F: 1.354331, P (F< = f) one-tail: 0.424749, F: Critical one-tail 19

Fig. 6: Two factor ANOVA without replication data
analysis tool

Table 7: The t-test: two-sample assuming unequal variances
Parameters Zebris gait FSR gait
Mean 32.06769231 31.725385
Variance 897.3112192 837.47333
df 24
t stat: 0.029632314, P (T< = t) one-tail: 0.488302668, t critical one-tail:
1.71088208, P (T<=t) two-tail: 0.976605335, t critical two-tail:
2.063898562

factor without replication test (Wearing et al., 2013) were 
performed to compare the gait parameters measured by
FSRs and zebris as shown in Table 1-4.

Table 5 has two parts. The first part provides
statistics for the rows. The second part provides statistics
for the columns. df is the degrees of freedom. Degrees of
freedom (n-1) of an estimate isthe number of independent
pieces of information that went into calculating the
estimate. The table features two values for F. One F is for
the rows and the other is for the columns. The p-value is
the  proportion  of  area  that  the  F cuts  off  in  the 
upper tail of the F-distribution. If this value is <0.05,
reject null hypothesis. Along the columns 15.789<18.512,
(F<Fcritical)  p>0.05,  we  can’t  reject  the  null  hypothesis 
and indicating no statistical difference between the
performance in FSR and zebris. Figure 6 shows the two
factor ANOVA without replication data analysis tool
(Reed III, 2003).

The ANOVA test was performed to gait parameters
of the three trials. There were no significant differences in
other gait parameters. Table 6 shows the F test two
sample for stance phase left F-test was performed to test
if the null hypothesis between the variances of two
systems are equal. Since, F<Fcritical we do not reject the
null hypothesis which indicates the variances of the two
populations are equal.

The t-test (Pandey, 2015; Jiaxi, 2010) was performed
on all the parameters measured. Table 7 shows, the t-test
for  two-sample  assuming  unequal  variances.  Using
one-tailed test, we are testing for the possibility of the 
relationship  in  one  direction  and  completely
disregarding the possibility of a relationship in the other
direction. Our null hypothesis is that the zebris gait mean 
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Fig. 7: Bland-Altman plot for stride time

Fig. 8: Bland-Altman plot for stance (L) time

is not equal to FSR gait say  x.  A  one-tailed test will test
either if the mean is significantly greater than x or if the
mean is significantly less than x but not both. Then,
depending on the chosen tail, the mean is significantly
greater than or less than x if the test statistic is in the top
5% of its probability distribution or bottom 5% of its
probability distribution, resulting in a p<0.05, following
which if t stat<-t  Critical two-tail or t stat>tCritical two-tail, we
reject    the    null    hypothesis.    This    is    not    the 
case, -2.063<0.029<2.063.  Therefore, we do not reject
the   null   hypothesis   where   null   hypothesis   signifies 
no  similarity  between  zebris  and  FSR  gait.  The
observed   difference   between   the   sample   means 
(32-31.7) is convincing enough to say that the gait
parameters between FSR and zebris do not differ
significantly.

Validity: Correlation scatterplot (regression line) was
plotted for various gait parameters measured by zebris
and FSR which depicts correlation between gait
parameters measure by zebris and FSR. High correlation
coefficient R2 indicates a high correlation. The scatter plot
shows a positive or direct association between zebris and
FSR gait measurements.

Bland-Altman plot (Giavarina, 2015; Altman and
Bland, 2017) is used as a comparison test in measurement
of same variable by two setups, zebris and FSR. The
Bland-Altman plot shown in Fig. 7 and 8 shows that all
the values of stride time for normal, fast and slow walk
both  in  zebris  and  FSR  lie  between  limits  of 
agreement (-0.08) and the error margins. Intra class
correlation for stance time in seconds was 0.8162.

Furthermore, there was no statistical difference
between the insole and the force plate with regards to the
resulting force and stance time. The Bland-Altman plots
confirm the validation results, showing equal error
margins between the limits of agreement. The standard
deviations and variances are also within these limits,
further confirming the insole’s validity.

CONCLUSION

The monitoring of gait is important to improve the
quality of care for PD patients. Many active researches
have been attempting to do it objectively and
autonomously.    Unlike    (Martinez-Marti  et  al.,  2014;
Xu et al., 2012a, b; Dugan and Bhat, 2005) we just use 3
force sensing resistors to carry real-time gait analysis,
achieving long battery life, making it unique for various
application likes sports, entertainment and rehabilitation.
Our proposed methodology focuses on unobtrusive gait
analysis detection by using a FSRs embed insole to
improve usability. In terms of clinical applications, the
insole can be used to detect the gait analysis results which
can be transmitted to a centralized medical location and
processed by trained medical personnel remotely.

RECOMMENDATIONS

The treatment and rehabilitation of patients cannot
occur until there is a diagnosis of how disabled a patient
is. The coin vibration motor present in the insole can be
provide vibrations in SYNC with phases of gait, for
rehabilitation therapy. The future scope is to design and
develop gait detection algorithm in smartphones that
acquires the acceleration signal from the insole for users
to assess the abnormality of gait. The accelerometer in the
smartphone can be used to measure gait characteristics. In
the future, this smartphone app will show the gait
abnormality and be able to use as a portable rehabilitation
device in the clinic and possibly at home.
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