
A Novel Methodology to Measure the Approximation of Near Optimal Algorithms for
Minimum Vertex Cover Problem

Zahid Ullah and Su-Hyun Lee
Department of Computer Engineering, Changwon National University, Changwon, South Korea

Key words: Graph instances, minimum vertex cover,
optimization problem, NP-complete problem, Maximum
Independent Set (MIS), approximation algorithm

Corresponding Author:
Zahid Ullah
Department of Computer Engineering, Changwon
National University, Changwon, South Korea

Page No.: 3391-3398
Volume: 15, Issue 19, 2020
ISSN: 1816-949x
Journal of Engineering and Applied Sciences
Copy Right: Medwell Publications

Abstract: Many algorithms have been proposed for the
solution of the Minimum Vertex Cover (MVC) problem
but the researchers are unable to find the optimality of an
approximation algorithm. In this study, we have proposed
a method to evaluate that either the result returned by an
approximation algorithm for the minimum vertex cover
problem is optimal or not. The proposed method is tested
on three algorithms, i.e., Maximum Degree Greedy
(MDG) algorithm, Modified Vertex Support Algorithm
(MVSA) and Clever Steady Strategy Algorithm (CSSA).
The proposed method provides an opportunity to test the
optimality of an approximation algorithm for MVC
problem with low computation complexity. The proposed
method has performed well during experimentation and its
results brighten the path of successful implementation of
the method for the evaluation of approximation algorithms
for the Minimum Vertex Cover (MVC) problem. The
testing of the proposed method was carried out on small
graph instances. The proposed method has resolved the
problem to test the optimality of the approximation
algorithm for the minimum vertex cover problem. This
technique has digitized the process of finding out the
accuracy of the optimal solution returned by
approximation algorithms for MVC.

INTRODUCTION

The minimum vertex cover is a very popular
NP-complete problem like other famous NP-hard
problems including Maximum Independent Set (MIS) and
Maximum Clique (MC) and so forth. The Maximum
Independent Set (MIS) contains those vertices in
G = (V, E) that are not in MVC such as

 and vice versa. Similarly,    MIS G V,E -MVC G V, E 
 

the maximum clique contains those vertices in G = (V, E)
that are in MVC of complement graph such as MC = G =

(V, E)-MVC where a complement graph is an undirected

graph hence, solving    E vi, vj | vi, vj V,i j, vi, vj E ,   


the MVC will definitely solve all NP-complete
problems[1].

A polynomial-time algorithm that has the capability
to solve the MVC problem has not been devolved to date.
It is also not possible for an algorithm to prove a super
polynomial-time bound for MVC. We can solve the MVC
problem in two ways, either by using the approximation
algorithms or exact algorithms. The approximation
algorithm can solve the MVC problem in polynomial time

3391

J. Eng. Applied Sci., 15 (19): 3391-3398, 2020

but no guarantee of optimality. The exact algorithms
provide the exact solution of the problem but as time goes
on they require increases exponentially with the size of
the problem. Hence, the approximation algorithms are the
better choice where the size of the problem is large and
the solution requires does not to be optimal. The exact
algorithm is the best choice where the size of the problem
is small with no time constraint. However, the issue arises
where the size of the problem is large and the optimal
solution is required in a short time. Hence, we need a
technique to measure the optimality of approximation
algorithms[2].

The Minimum Vertex Cover (MVC) is normally used
in different real-world applications. The approximation
algorithms have been successfully used for the solution of
the MVC problem. The approximation algorithms provide
a near-optimal solution within a reasonable time[3]. The
placement of guards in museums is the real-time
application of the MVC. Furthermore, the MVC problem
can also be used for the construction of hospitals, schools
and so forth, so that, they can cover the maximum area
and the maximum number of people can easily approach
the hospitals and schools[2]. Due to these applications, the
MVC problem has grasped the attention of many
researchers in the last decades and a lot of methods have
been proposed to solve this problem.

Cook in 1971 has divided all problems into classes
named polynomial-time problems (P-Problems),
non-deterministic polynomial-time problems
(NP-Problems), NP-hard problems and NP-complete
problems[1]. A problem that can be sorted out in a specific
time is called polynomial-time problems or P-Problems.
Examples of p-problems are the complement of a graph,
subtraction of a set of vertices from a graph. As opposed
to polynomial time, the NP problem cannot be solved in
a specific but rather require exponential time to be solved.
By using the current computation resources, it is
impossible to solve a large NP problem at a specific time.
There are a lot of NP-problems such as traveling salesman
problem, graph coloring problem and MVC problem and
so forth. According to Cook, the NP-complete problem
retains two properties which are the problem should be
NP and reducible in polynomial time to the NP-complete
problem[1]. The fundamental problem of the NP-complete
set is Boolean Satisfactory (SAT). The other problems
that can be converted in SAT Problem in polynomial time
are clique problem, MIS and so forth. MVC can also be
converted to MIS in polynomial time, hence included in
NP-complete problem set [4].

A vertex cover (V, C) in an undirected
graph G = (V, E) is a subset of vertices which covers all
the edges in a graph but as in MVC that VC should be
minimum[2]. Figure 1 the filled vertices represent the
vertices in vertex cover and the empty vertices represent
that the vertices do not belong to vertex cover in a
graph.

Fig. 1(a, b): (a) Graph with three vertices in vertex cover
and (b) Graph with four vertex cover

The least vertex cover in a graph is recognized as the
MVC. The vertex cover will be represented by λ that
denotes MVC size, i.e., λ = |C|[3]. The MVC solutions
have two main categories, namely approximation
algorithms and exact algorithms. Approximate algorithms
solve the problem in a reasonable time with guaranteed
optimality. Approximation algorithms provide a
near-optimal solution in a reasonable time. Approximation
algorithms are useful when the size of the problem is large
and the solution is required at a reasonable time. The
exact algorithms provide a guaranteed optimal solution
but time-explosion occurs as the dimension of the
problem grows. For solving a moderate size problem, it
can take billion or trillion years with currently available
computation power[5, 6]. The MVC problem can be
efficiently tackled by using approximation algorithms
while for the clique problem; complete algorithms are the
best choice. The approximation algorithms can be used to
solve a problem where the near-optimal solution is
required within no time. The problems in which
optimality has a critical concern and cannot be
compromised even in a long time, to solve these problems
complete algorithms are the best choice.

It is difficult to design a better complete algorithm for
the MVC problem due to its complex nature. Most of the
developed algorithms for the MVC problem are
approximation algorithms. In applications where
optimality is required within no time we cannot apply
approximation algorithms because of optimality constraint
and also the exact algorithm cannot be deployed due to its
low computational complexity.

The problem of MVC is an earlier NP problem which
was proven NP-complete[7]. The algorithms have
limitations so the NP-complete problems cannot be solved
with polynomial-time algorithms. Also, the algorithms do
not have the capability to prove a super polynomial-time
bound for any of these problems.

3392

(a)

(b)

J. Eng. Applied Sci., 15 (19): 3391-3398, 2020

The MVC problem can be divided into weighted and
un-weighted[8]. In addition, the MVC problem can be
divided into two versions, i.e., optimization and decision.
In the optimization version, the algorithm has to find the
best solution from the available feasible solutions. In the
decision version, the algorithm has to find the existence of
the desired size of ‘k’ where k is the MVC[9]. This study
deals with the un-weighted MVC problem. The important
preliminaries are presented in the subsequent section for
a better understanding of the algorithms.

Preliminaries:
C We are concerned with an undirected graph G = (V,

E) throughout this study where V represents the
number of vertices and E indicates the number of
edges

C For a vertex v0V, let deg (v) is the set of edge
occurrence to it, the minimum degree is represented
by δ in G = (V, E)

C A graph is indicate complemented graphs such
that œ = (V, Ê) where Ê = {(νi, νj0V, i…j, (νi, νj)óE}

Where Ap is an approximate algorithm for the MVC,
symbols7, Δ and δ are used for assignment, maximum
degree and the minimum degree, respectively. In this
study, we have proposed a method named as Optimality
Measurement of Approximation Algorithms (OMAA).
The purpose of the problem algorithm is to measure the
optimality of approximation algorithms for the minimum
vertex cover problem. The time requires to solve a
problem by using the complete algorithm increase
exponentially as the size of the problem increase. Hence,
we need a solution to find the optimal solution in a
reasonable time. Hence, in the proposed approach we
have proposed a technique to check the optimality of an
approximation algorithm. Hence, the proposed approach
is a better choice in a situation where optimal results are
required for large graph instances in a reasonable time.
This method provides the opportunity to check whether
the result returns by an approximation algorithm for the
minimum vertex cover problem is optimal or not.

Literature review: In this study, the literature review of
some well-known state of the art algorithm has been
carried out for the MVC problem; all the selected
algorithms are approximate algorithms.

The simplest algorithm that was initially developed
for MVC is MDG[10]. The MDG is the alternative form of
set cover algorithm suggested by Chavatal et al.[11]. In this
approach initially, each node degree is calculated in the
graph and that node is selected as the MVC node having
the highest degree.

The Maximum Degree Greedy (MDG) approach
calculates the degree continuously until a maximum

Fig. 2(a, b): (a) Optimal vertex cover and (b) Vertex
cover returned by MDG

degree node has been found out. The network bench
model is used for the calculation of the degree in MDG
which takes O (E) steps. The technique is so simple and
works on the simple steps but the best solution is not
guaranteed in greedy approaches, the same is the issue
with MDG. When MDG selects a node for the calculation
of maximum degree for vertex cover, there is no surety
that the selected vertex is part of maximum vertex cover
or not. There is a possibility of selection of extra vertexes
that can cause poor results. The computation complexity
is reasonable, therefore preferred over other
approximation algorithms.

The Maximum Degree Greedy (MDG) algorithm fails
to provide the optimal result on some benchmark graphs
as shown in Fig. 2. The shape C represents a vertex in
vertex cover and vertex not in the vertex cover is
represented by the shape ~.

The worst runtime complexity of the Maximum
Degree Greedy (MDG) is O (E2) which indicates the
computation efficiency of the MDG algorithm. Another
simple heuristic algorithm is the Modified Vertex Support
Algorithm (MVSA)[12] which is achieved by modifying
the vertex support algorithm[13]. The same data structure
has been introduced in MVSA as in VSA. First, the
calculation of each node degree is carried out then the
least degree node is chosen and the resultant node is
considered as MVC node having minimum support values
in the neighbor is selected as MVC node.

The MVSA is computationally efficient; the decisions
are made straightforward. The runtime complexity of the
Modified Vertex Support Algorithm (MVSA) is O
(EV2log v). The MVSA also fails to deal with small
instances as in Fig. 3.

The Clever Steady Strategy Algorithm (CSSA) is a
simple approximate algorithm for solving the MVC

3393

(a)

(b)

6 2

5 3

4

19

8

7

6 2

5 319 7

84

J. Eng. Applied Sci., 15 (19): 3391-3398, 2020

Start

Input G = (V, E)

Complement the graph as
G’ = (V, E)

Apply Ap on G’ = (V, E) and
assign result to C

Subtract MVC vertices of ap
from graph P = V-C

Calculate the degree of each
vertex in G = (V, E), deg (V)

Locate the minimum degree
vertex in G and assign to x

IF (deg (x)<P)

The result of approximate
algorithm for G is not optimal

Remove the x from
G, G = G-x

IF (G = (V, E))≠Ø

The result of approximate
algorithm for G is optimal

End

YesNo

NoYes
Fig. 3(a, b): (a) Optimal vertex cover and (b) Vertex

cover returned by MVSA

Fig. 4(a, b): (a) Optimal vertex cover and (b) Vertex
cover returned by CSSA

problem[4]. The algorithm first locates the minimum
degree vertex and then its entire neighbor vertices are
searched out, the minimum degree vertex in all neighbors
of the vertex having the least degree will be selected for
adding to the vertex cover.

The Clever Steady Strategy Algorithm (CSSA) does
not provide an optimal solution on some benchmark
instances as shown in Fig. 4. The other most prominent
near-optimal algorithms proposed for the MVC problem,
are; Vertex Support Algorithm (VSA)[13], Advanced
Vertex Support Algorithm (AVSA)[14], Degree
Contribution Algorithm (DCA)[15], Max Degree Around
(MDA) algorithm[2], Mean of Neighbors of Minimum
degree Algorithm (MNMA)[16] and the Maximum
Adjacent Minimum degree Algorithm (MAMA)[17].

MATERIALS AND METHODS

Proposed method: An algorithm time that has the
potential to provide the optimal solution of the MVC

Fig. 5: Flow diagram of the proposed algorithm

problem has not been devolved to date. It is also not
possible for an algorithm to prove a super
polynomial-time bound for MVC. We can solve the MVC
problem in two ways, either by using the approximation
algorithms or exact algorithms. The approximation
algorithm can solve the MVC problem in polynomial time
but there is no guarantee of optimality. The exact
algorithms provide the exact solution of the problem.
Hence, the approximation algorithms are the better
choice where the size of the problem is large and the
require solution is not optimal. The exact algorithm is the
best choice where the size of the problem is small with no
time constraint. However, the issue arises where the size
of the problem is large and the optimal solution is
required in a short time. Hence, we need a technique to
measure the optimality of approximation algorithms in
this section, a novel technique has been suggested for
optimality of an approximation algorithm and if the
approximation for a certain application is optimal when
there is no need to deploy multiple approximate
algorithms for it (Fig. 5).

The proposed approach will also evaluate the
optimality of approximate algorithms for the MVC
problem. In the proposed approach, first the complement
of the graph will be carried out then approximate
algorithm for MVC will be deployed on it and the output
result will be saved in C. Afterward the nodes in the VC
will be subtracted from the vertices in G = (V, E) and the
result will be saved in P.

3394

(a)

(b)

5

4 2

3

1

5

4 2

3

1

(a)

(b)

2

3

6

6

5

4

1

1

5

42

3

J. Eng. Applied Sci., 15 (19): 3391-3398, 2020

Furthermore, the minimum degree vertex in G = (V,
E) will be calculated, if the degree of minimum degree
vertex becomes less than P, then it will be removed from
G = (V, E) and the graph will be updated. The process
continues until the graph becomes empty or the degree of
minimum degree vertex becomes equal or greater than P.
If the graph becomes empty, it means that the solution of
the deployed approximation algorithm is optimal. In the
second case if after deleting the vertex when a situation
arises where the degree of a minimum degree vertex
becomes greater or equal to P, then it means that the
solution provided by the approximation is not optimal.
The detailed flow diagram of the suggested technique is
provided in Fig. 5.

Algorithm 1; Pseudocode for Optimality Measurement
of Approximation (OMA) method:
Input: G = (V, E)
Output: Optimality
Begin:
 1. C7Ap (G’= (V, E’))
 // apply approximate algorithm on

the completed graph
 2. P7V-C

 // subtract the minimum vertex cover from G
 3. FOR i71 to V { i. deg(vi) }
 // compute each node degree
 4. x7δ (G = (V, E))
 // compute the minimum degree node in

 G = (V, E)
 5. IF (deg(x)< P) {i. G = (V, E)7G = (V, E)-x}
 //Remove the least degree vertex from G = (V,
 E), G = G-x
 6. IF((G = (V,E)) = Ø) {result of Ap is optimal go
 to End }
 // If the graph become empty
 7. IF (deg(x) =>P) { result of AP is not optimal go
 to End}
 // If the degree of the minimum degree vertex
 becomes greater or equal to P
 8. Else Go to step 3
End

RESULTS AND DISCUSSION

 In this study, we have applied some well-known
approximation algorithms on the small benchmark graphs
to elaborate on the working mechanism of the proposed
approach better. There are numerous approximation
algorithms for solving the MVC problem. We have
selected the Maximum Degree Greedy (MDG) algorithm,
Modified Vertex Cover Algorithm (MVSA) and Clever
Steady Strategy Algorithm (CSSA), the detailed
description of these methods is provided in the literature
review section. The selected methods are approximate
having different working mechanisms.

The proposed method starts with complementing the
graph given in Fig. 6a. The graph complementation is

Fig. 6(a-g): (a) Given Graph G = (V, E), (b)
Complemented Graph G = (V, E’), (c)
Vertex Cover returned by MDG, (d) Vertex
Cover returned by MVSA and CSSA, (e)
Updated Graph Given by MVSA and CSSA,
(f) Reduced Graph Given by MVSA and
CSSA and (g) Final Graph Given by MVSA
and CSSA

the essential step of the proposed method before applying
any processing. After the graph complementation, we
applied the Maximum Degree Greedy (MDG)
approximation algorithm given in Fig. 6b. The vertex
cover by any algorithm depends upon the strategy of
the selection of the first vertex of the graph. The
Maximum Degree Greedy (MDG) algorithm covers the
complemented graph in 3 vertices (if the vertex 1 is
selected first) as shown in Fig. 6c, hence, according to the
proposed approach it will be saved in C (C73), then P will
be calculated, i.e., P75-3 = 2. In step 3, each node degree
of the graph in Fig. 6a will be calculated such as 1(2),
2(2), 3(3), 4(2) and 5(3). Afterward, the minimum degree
vertex will be located in the given graph. In case of the
vertices 1, 2 and 4 having the same minimum degree, one
of them will be selected, (we selected the vertex 1) and
the degree of the same will be compared to P. The p-value
is equal to the minimum degree that proves the solution
provided by Maximum Degree Greedy (MDG) algorithm
is not optimal.

Similarly, the proposed technique was applied to the
MVSA on the complemented graph Fig. 6b. The MVSA
covers the graph in 2 vertices as shown in Fig. 6d, hence,
C73. The vertices 1, 2 and 4 have the same minimum
degree vertices (the degree is 2), so, we have selected
vertex 1 randomly. Whereas, the comparison of p-value
and the minimum degree value take place where p-value
is greater than the minimum degree value. Hence, the
vertex 1 will be removed from the graph and the graph
will be updated as shown in Fig. 6e. Again the minimum

3395

4

1
5

32
1

4 5

3 2

(a) (b)

(c) (d)

1
4

2

5

3
1

4

2

5

3

3

54

2

4

2 3

4

3

(e) (f)

(g)

J. Eng. Applied Sci., 15 (19): 3391-3398, 2020

Table 1: Optimality results of approximation algorithm on large graph instances
Benchmarks V I* CSSA (I, ρ) MDG (I, ρ) MVSA (I, ρ)
graph50_6 50 38 (38,1) (38,1) (38,1)
graph50_10 50 35 (35,1) (35,1) (35,1)
graph100_1 100 60 (60,1) (60,1) (60,1)
graph100_10 100 70 (70,1) (70,1) (70,1)
graph200_5 200 150 (150,1) (150,1) (150,1)
graph500_1 500 350 (350,1) (350,1) (350,1)
graph500_2 500 400 (400,1) (400,1) (400,1)
graph500_5 500 290 (290,1) (290,1) (290,1)
phat300-1 300 292 (293,1.003) (293,1.003) (294,1.006)
phat300-2 300 275 (275,1) (278, 1.010) (279,1.014)
phat300-3 300 264 (266,1.001) (269,1.010) (272,1.030)
phat700-1 700 689 (692,1.004) (693,1.004) (692,1.004)
phat700-2 700 656 (658,1.003) (660,1.003) (660,1.006)
phat700-3 700 638 (640,1.003) (642,1.003) (649,1.017)
johnson8-2-4 28 24 (24,1) (24,1) (24,1)
johnson8-4-4 70 56 (56,1) (62,1) (56,1)
johnson16-2-4 120 112 (112,1) (112,1) (112,1)
johnson32-2-4 496 480 (480,1) (480,1) (480,1)
sanr200_0.7 200 182 (183,1.005) (184,1.005) (186,1..021)
sanr200_0.9 200 158 (164,1.03) (164,1.005) (163,1.031)
sanr400_0.5 400 387 (388,1.002) (392,1.0026) (389,1.005)
sanr400_0.7 400 379 (382,11.007) (384,1.007) (381,1.005)
fbr35-17-2 595 560 (565,1.008) (570,1.014) (565,1.008)
fbr_30_15_5 450 420 (426,1.01) (429,1.009) (424,1.009)
c125 125 91 (94,1.03) (93,1.003) (95,1.043)
C250.9 250 206 (211,1.02) (211,1.0145) (211,1.0145)
brock200_1 200 188 (190,1.01) (190,1.004) (191,1.015)
brock200_4 200 183 (185,1.01) (192,1.01) (193,1.054)
gen200_p0.9_4 200 156 (164,1.05) (165,1.05) (166,1,064)
hamming6-2 64 32 (32,1) (32,1) (32,1)
hamming6-4 64 60 (60,1) (60,1) (60,1)
hamming8-2 256 128 (128,1) (128,1) (128,1)
hamming8-4 256 240 (240,1) (240,1) (240,1)
hamming10-2 1024 512 (512,1) (512,1) (512,1)
dsjc-500 500 487 (489,1.004) (491,1.004) (489,1)
killer4 171 160 (160,1) (164,1.025) (160,1)
killer5 776 749 (754,1.006) (764,1.02) (754,1)
c-fat200-1 200 188 (188,1) (188,1) (188,1)
c-fat200-2 200 176 (176,1) (176,1) (176,1)
c-fat200-5 200 142 (142,1) (142,1) (142,1)
c-fat500-1 500 486 (486,1) (486,1) (486,1)
c-fat500-2 500 474 (474,1) (474,1) (474,1)
c-fat500-5 500 436 (436,1) (436,1) (436,1)
c-fat500-10 500 374 (374,1) (374,1) (374,1)
MANN_a27.clq.b 378 252 (253,1.003) (261,1.04) (253,1)

degree vertex degree will be equal to 2 which is less than
p-value, (all have the same degree, we selected vertex 2
randomly), hence, it will be removed from Fig. 6e and
again the graph will be updated as shown in Fig. 6f. Now,
the minimum degree vertices were 2 and 3 having the
degree 1, we selected 1, compared with p-value and
removed from Fig. 6f and the graph will be updated as
shown in Fig. 6g. Next the minimum degree was equal to
1 of both remaining vertices (4 and 3) of Fig. 6g, we
selected vertex 4, its degree was <P, so, removed from
Fig. 6g, after this vertex deletion the graph became empty
which indicates that the solution returned by Modified
Vertex Support Algorithm (MVSA) was optimal.
Hence, no need to apply any further approximation
algorithm.

If we apply the CSSA algorithm on the graph given
in Fig. 6a, it will return the same result as provided by
MVSA. The MVSA and Clever Steady Strategy
Algorithm (CSSA) both are optimal on Fig. 6a.
Eventually, the CSSA and MVSA algorithms are the best
choices for the stated Fig. 6a.
 We have also applied the CSSA, MVSA and MDG
algorithms on large graph instances for proper evaluation
of the proposed method. The benchmark instances are
taken from two public libraries namely DIMACS and
BHOSLIB. Approximation ration formula is given in
Eq. 1 in order to check the performance of approximation
algorithms (Table 1):

(1)k
*
k

I
pi 1

I
 

3396

J. Eng. Applied Sci., 15 (19): 3391-3398, 2020

Here pi represents the approximation ratio, Ai
represents the approximate solution and OPTi represent
the optimal solution of a problem. After putting values in
Ik and in equation 1, if pi = 1 it indicates that the*

kI

solution is optimal. More deviation from 1 specify that the
solution is poor[4].

We have applied the algorithms on graphs 2-4. The
Maximum Degree Greedy (MDG) fails to provide an
optimal solution on the graph given in Fig. 2. The MVSA
fails to provide the best solution on the graph given in
Fig. 3 and Clever Steady Strategy Algorithm (CSSA) fails
to provide an optimal solution on the graphs given
in Fig. 4. On the graph given in Fig. 2 the Maximum
Degree Greedy (MDG) fails to provide an optimal result
but on the same graph, Modified Vertex Support
Algorithm (MVSA) and Clever Steady Strategy
Algorithm (CSSA) return optimal solution. On the graph
given in Fig. 3, Modified Vertex Support Algorithm
(MVSA) fails but Clever Steady Strategy Algorithm
(CSSA) and Maximum Degree Greedy (MDG) provide
optimal solutions. Similarly, on the graph in Fig. 4 the
Clever Steady Strategy Algorithm (CSSA) and Modified
Vertex Support Algorithm (MVSA) both fail but
Maximum Degree Greedy (MDG) returns optimal
solution.

This strategy was needed to test that either the given
approximation algorithm provides an optimal solution for
a graph or not. These results reveal the importance of the
suggested evaluation method of the approximate
algorithms for the MVC problem. In order to support the
effectiveness of our proposed method, we have also tested
the proposed approach on large graph instances of some
standard libraries. The results indicate that the proposed
method is equally effective on small graph instances as
well as on large graph instances.

CONCLUSION

The proposed method evaluates the optimality of
approximation algorithms for the MVC problem. The
basic determination of developing this technique was to
save time and test the application compatibility of an
approximation algorithm of MVC for a particular
problem. The detailed description of some well-known
algorithms that were used for the evaluation of the
proposed method for MVC has been provided. The
proposed method was tested on small benchmark graphs
and proved a successful technique. We can apply the
proposed technique in a situation where the exact solution
is required in a reasonable time. Hence, we can escape
from applying the complete algorithms and we can apply
the approximation algorithms.

REFERENCES

01. Karp, R.M., 1972. Reducibility among Combinatorial
Problems. In: Complexity of Computer
Computations, Miller, R.E. and J.W. Thatcher (Eds.).
Plenum Press, New York, pp: 85-133.

02. Fayaz, M., S. Arshad, A.S. Shah and A. Shah, 2016.
Max degree around (MDA) algorithm: A smart and
efficient approximate algorithm for vertex cover and
independent set problems. Sindh Univ. Res. J. (Sci.
Ser.), 48: 17-26.

03. Li, X.Y. and Y. Wang, 2006. Simple approximation
algorithms and PTASs for various problems in
wireless ad hoc networks. J. Parallel Distrib.
Comput., 66: 515-530.

04. Fayaz, M. and S. Arshad, 2015. Clever steady
strategy algorithm: A simple and efficient
approximation algorithm for minimum vertex cover
problem. Proceedings of the 2015 13th International
Conference on Frontiers of Information Technology
(FIT), December 14-16, 2015, IEEE, Islamabad,
Pakistan, pp: 277-282.

05. Bomze, I.M., M. Budinich, P.M. Pardalos and M.
Pelillo, 1999. The Maximum Clique Problem. In:
Handbook of Combinatorial Optimization, Du, D.Z.
and P.M. Pardalos (Eds.). Springer, Boston,
Massachusetts, pp: 1-74.

06. Pardalos, P.M. and J. Xue, 1994. The maximum
clique problem. J. Global Optim., 4: 301-328.

07. Baamann, K., 2003. The maximum clique
problem-on finding an upper bound with application
to protein structure alignment. Ph.D. Thesis, Georgia
Institute of Technology, Atlanta, Georgia.

08. Tomita, E., Y. Sutani, T. Higashi and M. Wakatsuki,
2013. A simple and faster branch-and-bound
algorithm for finding a maximum clique with
computational experiments. IEICE Trans. Inf. Syst.,
96: 1286-1298.

09. Pollatos, S., 2008. Solving the maximum clique
problems on a class of network graphs, with
applications to social networks. Ph.D. Thesis, Naval
Postgraduate School, Monterey, California.

10. Clarkson, K.L., 1983. A modification of the greedy
algorithm for vertex cover. Inf. Process. Lett., 16:
23-25.

11. Chvatal, V., 1979. A greedy heuristic for the
set-covering problem. Math. Operat. Res., 4:
233-235.

12. Imran, K. and K. Hasham, 2013. Modified vertex
support algorithm: A new approach for
approximation of minimum vertex cover. Res. J.
Comput. Inf. Technol. Sci., 1: 1-6.

3397

J. Eng. Applied Sci., 15 (19): 3391-3398, 2020

13. Balaji, S., V. Swaminathan and K. Kannan, 2010.
Optimization of unweighted minimum vertex
cover. World Acad. Sci. Eng. Technol., 43:
716-729.

14. Ahmad, I. and M. Khan, 2014. AVSA,
modified vertex support algorithm for
approximation of MVC. Int. J. Adv. Sci. Technol.,
67: 71-78.

15. Khan, I. and H. Khan, 2014. Degree contribution
algorithm for approximation of MVC. Int. J. Hybrid
Inf. Technol., 7: 183-190.

16. Fayaz, M., S. Arshad, A.S. Shah and A. Shah, 2016.
An optimal approximation algorithm for optimization
of un-weighted minimum vertex cover problem.
Sindh Univ. Res. J. (Sci. Ser.), 48: 175-182.

17. Fayaz, M., S. Arshad, U. Zaman and A. Ahmad,
2016. A simple, fast and near optimal approximation
algorithm for optimization of un-weighted minimum
vertex cover. Proceedings of the 2016 International
Conference on Frontiers of Information Technology
(FIT), December 19-21, 2016, IEEE, Islamabad,
Pakistan, pp: 176-180.

3398

