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Abstract: This research addresses time-variant system
reliability estimation models of dynamical systems where
the governing equations formulated as a set of Stochastic
Functional Differential Equations with Infinite Delay
(SFDEwID) at state-space Cr. Reliability estimation forms
of series and parallel systems tackled depending on Monte
Carlo simulations based on extends Girsanov’s
transformation for infinite delay SFDEs.

INTRODUCTION

System reliability defines as the probability that a
system (for one component or more) will execute properly
under a given set of operating conditions for a particular
time interval see[1]. The reliability of a system changes
depending on time. In other words, reliability is a
time-variant value. In the engineering practice,
Time-variant reliability problems appear when the
material properties of the structure deteriorate in time, like
corrosion in steel structures, concrete shrinkage and creep
phenomena. Also, when random loading modelled
involved as random processes such as temperature, wave
height, traffic loads[2]. Estimation the reliability consists
of determining the probability of success and the
probability of failure in a duration of time. Also, it
depends on components configuration where system
success (failure) described as combinations of unions or
intersections of these component failure events[3, 4]. There
are many kinds of component’s settings available such as
series, parallel and many others for details[5]. Any

dynamic system represented as a system of equations but
not all system of equations have specific solutions,
especially, if the governing equations are Stochastic
Differential Equations (SDEs). The Girsanov’s
transformations applied to such governing system of
equations to achieve estimators for system reliability or
failure probability[3, 4, 6, 7]. In this chapter, we extended and
applied the Girsanov’s transformations to a system of
Stochastic Functional Differential Equations with Infinite
Delay (SFDEwID) to get models of estimation of series
and parallel system’s reliability.

Theoretical background of system reliability: In this
study, we outline the basic theory of system reliability,
and the exposition follows mostly Barlow[1].

Reliability function: The reliability function related to
the survival of a system in the specified interval of time
(0, t) which is the probability that the system does not fail
in the period (0, t) where t is the time at which the system
is still operating and mathematically defined as follows:
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where, PF(t) is the probability of failure within the time
interval (0, t) and f(s) is the probability density function
(pdf)  of  time  to  failure,  thus,  from  Eq.  2,  we  have
O#PS(t)#1.

Failure   rate   function:   The   failure   rate  function
(hazard rate   function)   is   the   probability   that   a  
system will fail within  a  specified  time  interval  (t,  t+h) 
by   knowing   the   fact   that   the  component  or  the
system  is  functioning  at  time  t.  This  probability
defined as:
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where, T is the failure time and one can obtain the failure
rate function λ(t) by:
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Modelling failure rate: In this research, the normal
distribution used to describe the failure rate. The
probability density function (pdf) of normal distribution
with time to failure t is defined as follows:
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where, μ is the mean value (Mean Time to Failure
(MTTF)), σ is the standard deviation and σ2 is the
variance of the normally distributed time to failure t.
Cumulative distribution function (cdf) of the normal
distribution is defined as:
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Thus, the reliability rate is:
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Consequently, the failure rate is:

Fig. 1: Series system with n components

Fig. 2: Parallel system with n components
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System  structure  function:  Any  system  is  a
collection  of  components  (subsystems),  thus,  the
system  structure  function  depends  on   the
configuration of the elements (subsystems). For a system
formed by n components, let a vector  = (x1, x2, ...,x

xn)0{0, 1}n with xi = 1 if the ith component is in working
state and xi = 0 if not, be the state vector which gives the
state  of each component in the system  and Φ = Φ(x):x

{0; 1}n6{0; 1} define the system structure function where
Φ = 1 if the system functions for its corresponding
components state vector  and Φ = 0 if not. To explainx

structural  relationship  between  a  system  structure
function  and  its  components  state  vector  we introduce
two  kind  of  systems  as  an  examples,  for  more
details[8].

Series system: A system that is working if and only if all
the  components  are  functioning  is  called  a  series
system. Figure  1  the  reliability  block  diagram  of 
series  system.  The  structure function  for  the  system 
is given by:

(8) 
n

1 2 n i
i 1

x x ×x , ..., x x


  

Parallel system: A system that is working if and only if
at least one component is functioning is called a parallel
system. Figure 2 shows the corresponding block diagram
for this system. The structure function for the system is
given by:
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System reliability function: The relationship within
system’s components is essential to determine the
reliability of the system as a whole and thus once the
system structure function  is known, the reliability canx

be calculated. For independently functional components 
if  pi  the  reliability  of  the  component  i and R = PS is
the corresponding reliability (probability of success) of
the system then the reliability of the series system,
depending to Eq. 8 is:

(10)
  

   

n

s s i
i 1

n n

1 2 n i i
i 1 i 1

P P x 1 P x 1

P x 1,x 1, ..., x 1 P x 1 p



 

       
 

     



 

And similarly, the reliability of a parallel system
where it’s structure function given in Eq. 9 is given by:
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In order to get an estimation of system reliability
measure, we suppose that a dynamical system represented
as an SFDEwID, then the probability measure will be
changed to another absolutely continuous probability
measure and this called the Girsanov’s transformation
where the change is accomplished by adding a control
function (drift function) to the noise term[8] as we explain
in the next section.

SFDEWID AND GIRSANOV’S
TRANSFORMATION

Kanjilal[3, 6] and Sundar[4] considered a class of dynamical
systems which are governed by SDE to estimate system
reliability. In this section, we extended the governed
equation to SFDEwID and applied the Girsanov’s
transformations to get models of estimation of series and
parallel system’s reliability. Consider a system of
stochastic functional differential equations with infinite
delay:
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Here, x(t) is a n×1 vector and xt = x(t+θ): -4<0.b (.) 
is a non-negative n×1 drift vector, σ(.) is a n×m matrix of

diffusion coefficients and w(t) is an m-dimensional
Brownian motion. It is clear that the system (3.1) is a
NSFDEwID with the neutral term D(.) = 0.  Let (Ω, F, P)
be a complete probability space with a filtration {Ft}t0[0,+4)

satisfying the usual conditions (i.e., it is right continuous
and F0 contains all P-null sets). The basic assumption is
that performance and design requirements of a dynamical
system restrain the acceptable values of the response to
the safe domain and the dimension parameter n depends
on the problem under study[9].

Let g(x(t)) be a scalar measure (limit state function)
of a system and g* be its safe limit value on g(x(t)), so
that, the failure event is given by:
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- t T
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for all t0(-4, T ]. P{.} is a probability measure (reliability
measure) that the system performance stays below the
safe  limit  g*  for  all  times  during  the  time  interval 
t0(-4, T]. Thus, PS denotes the reliability and:

(14)       F s
- t T

P T 1-P T P : max g x t, g*
 
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the probability of failure. In other words the events
g*-gm<0 and g* -gm>0 represent, respectively, failure and
reliability of the system where, gm = max-4#t# m g(x(t)). A
direct Monte Carlo estimator for reliability of the system
(PS(T )) in terms of random draws xj(t), j = 1, ..., N of x(t)
that, we can get by solving (Eq. 14) numerically is given
by:
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It can be shown that:
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where   Ep[.]   is   the expectation   under   the
measurement P and:

(17)
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Thus:
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which means to obtain acceptable estimates of PF, sample
size needed would enormous[3, 4, 10]. So, to manage the
sample size, the recourse is the method of Girsanovs
transformation. By reconstructs the drift term in the
system (Eq. 12) via. An additional control force t(x ) 
leads to obtain a modifield dynamical SFDEwID system
governed by:

(21)
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where  is an additional drift term of dimension n×1t(x ) 
and  is an Itos process given by: t

(22)       d t -u xt dt+d t ; 0 0;t 0      

The  transformation  of  Eq.  12,  21 essentially
changes the  underlying  probability  measure p to  a  new
measure Q such that Q is absolutely continuous with
respect to  p(Q<<P).  By  the  virtue  of  Girsanovs
theorem is  a  m-dimensional  Brownian  process  t
with respect  to  the  new  probability  measure  Q 
defined  on (Ω,  F)  an  th  associated   Radeon-
Nikodym’s   derivative   that  can  compute   explicit[11] 
is given by:
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Hence, once now has:
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where,  I{.}  denotes the  indicator  function.  From Eq. 23
it is clear that :
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0 0

y t y t dP
Q 0 1and E t dQ 1

y y dQ

   
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By rewriting Eq. 23 as:
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0 s0

1
y(t) y f G t exp G t - u x ds

2
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And:

     
t

s0
G t - u x d s  

And by differentiating using Ito’s rule, it can be shown
that:

(25)         t 0dy t -y t u x dx t ;y 0 y  

An estimator for PF, based on Eq. 25 can now be
obtained as:

(26)
 

   j

jN

F j g*max- t T h x t 0
j 1 0

y T1
P I

N y   


  

where the realization  are obtained as sample   j jx t and y t
solutions of Eq. 21 and 24, respectively with:

(27)j
0y 0 for all j 1,...,N 

Estimation  models  of  system’s  time-variant 
reliability based on component configuration: For
highlight  the  purpose  of  determining  the  Girsanov
control and the associated Radon-Nikodym derivative in
the  problem  of  time-variant  reliability  analysis,  it  is
useful to introduce examples of estimation’s models of
series and  parallel  system  reliability.  For more
configurations[3, 4].

Reliability of series system: If N number of failure
components arranged in series then the system failure
events, according of Eq. 12 is given by:
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where j = 1, ...., N and the probability of failure will be:
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Consequently, by the Eq. 14 and 15 the estimators for
series system reliability given by:
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s
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Reliability  of  parallel  system:  By  the  same way
above, If  N  number  of  failure  components  arranged in
parallel  then  the  system  Probability  failure  is given
by:
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N

* j
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And the estimators for parallel system reliability are:
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And:
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