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Abstract: In regression analysis, the main interest is to
predict the response variable using the exploratory
variables by estimating parameters of the linear model.
However, in reality, the exploratory variables may share
similar characteristics. This interdependency between the
exploratory variables is called multicollinearity and
causes parameter estimation in regression analysis to be
unreliable. Different approaches to address the
multicollinearity problem in regression modelling include
variable selection, principal component regression and
ridge regression. In this study, the performances of these
techniques in handling multicollinearity in simulated data
are compared. Out of the four regression models
compared, principal regression model produced the best
model to explain the variability and its parameter
estimates were precise and addressing multicollinearity.

INTRODUCTION 

Regression  analysis  is  a  statistical  tool  to
investigate relationships between variables[1]. According
to Chatterjee et al.[2], regression analysis ascertains the
quantitative effect of variables on other variables and
assesses the statistical significance of the estimated
relationships. Regression analysis with one independent
variable  is  the  simple  linear  regression  where  only
one  dependent  variable  is  regressed  on  one
independent variable. Multiple linear regression is when
a dependent variable is regressed on >1 independent
variable.

A major issue possible in multiple regression analysis
is the intercorrelation between independent variables,
termed multicollinearity[3]. Dormann et al.[4] state that

collinearity describes a situation where some predictor
variables in a statistical model are linearly related.
Multicollinearity is as a problem to every investigator
when their main focus is to predict the outcome of a
dependent variable from a set of independent variables in
multiple linear regression[5].

Multicollinearity problems cause instability problems
in regression analysis[6, 7]. Fekedulegn et al.[8]  explain the
disadvantages of using Ordinary Least Square (OLS)
regression for estimating the regression parameters when
multicollinearity exists between independent variables.
OLS produces regression coefficients that could violate
the practical situation. Coefficients could fluctuate in sign
and magnitude due to small changes in the dependent or
independent variables. They can also inflate insignificant
standard errors.
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There are several methods to detect the presence of
multicollinearity. Dormann et al.[4] demonstrate that
multicollinearity cannot be solved.

Aim and objectives: The aim of this study is to describe
multicollinearity and its impact on multiple linear
regression analysis. A real-life scenario in Psychology is
used for illustrations. The level of multicollinearity
between the independent variables in the data is then
controlled through a predefined correlation structure.

Methods to address the multicollinearity in the data
include stepwise regression, Principal Component
Regression (PCR) and ridge regression. These models are
assessed through model fit measures and the
interpretability of the results.

Multicollinearity problem: Gujarati[9] illuminates that
regression analysis estimates dependency between the
dependent and the independent variables the parameters.
It is not involved in estimating the interdependency
between independent variables which is multicollinearity.
Farrar and Glauber[10] studied multicollinearity in
regression analysis and considered the proper treatment of
multicollinearity, its detection or diagnosis and how to
correct it with possible additional information. 

According to Naes and Mevik[5], a central issue with
multicollinearity in data analysis occurs when estimating
the parameters of a regression model. When conducting
regression analysis, the model fit is assessed using
measures such as the p-value and the (R2) value. R2

indicates the proportion of variation in the dependent
variable accounted for by the independent variables in the
model[2]. Whenever the model gives a high R2 and an
overall p-value below 0.05, the model is considered to be
a good fit. However, if the multicollinearity in the data is
severe, both R2 and p-value can mislead the “proper
specification and effective estimation of the type of
structural relationship commonly sought through the use
regression[10].

Dormann et al.[4]  state that multicollinearity can lead
to inflated variance of regression parameters as well as
incorrect identification of important predictors in the
regression analysis. Mela and Kopalle[11] highlight other
problems of multicollinearity. They state that various
econometric references such as Belsly et al.[12], Greene[13] 
and Kmenta[14] indicate that collinearity increases
estimates of parameter variance, yields high R2 in the face
of low parameter significance and results in parameters
with incorrect signs and implausible magnitudes.

Multicollinearity diagnostics: Lafi and Kaneene[15] state
that in data analysis, the first step is to run diagnostic tests
to investigate the existence of multicollinearity. There are

different ways to detect multicollinearity such as the
correlation matrix, scatterplots, tolerance, Variance
Inflation Factor (VIF) and Condition Indices (CI).
According to Farrar and Glauber[10], the simpler and
easiest way of detecting multicollinearity is in the main
diagonal elements of the inverted correlation matrix of the
predictor variables. Liu et al.[16] states that when the
correlation coefficient between two independent variables
is large, there is an indication of possible
multicollinearity.

Tolerance and VIF are commonly used to detect
multicollinearity. Tolerance is the complement of Ri

2, the
squared multiple correlation of the ith variable with other
independent variables[17]. It is interpreted as the proportion
of variance in the ith independent variable that is not
related to the other independent variables in the model.
VIF is the reciprocal of the tolerance. The relationship
between tolerance and VIF is inversely proportional,
therefore, variables with low tolerance tend to have large
VIF. This would suggest that those variables are collinear.
Chatterjee et al.[2]  suggest that a VIF value >10 indicates
the existence of multicollinearity.

CI  values  are  the  square  roots  of  ratios  of the
largest eigenvalue to each successive eigenvalue. A CI
value >15 indicates a  possible  problem  and  an  index
>30  suggest  a  serious  problem  with 
multicollinearity[16]. Chatterjee et al.[2] state that this
criterion is based on empirical observation rather than on
pure theory.

Dealing with multicollinearity: Multicollinearity is a
difficult problem to solve in regression analysis. In some
cases it cannot be entirely eliminated[18]. Dormann et al.[4]

argue that the problem of multicollinearity cannot be
solved and that statistical methods cannot separate
collinear variables. Despite this there are different
methods to address multicollinearity in regression
modelling.

One way to deal with the multicollinearity is through
stepwise regression where predictors are added to or
removed from the model sequentially[19]. Stepwise
regression is used when there is evidence of
multicollinearity by sequentially adding or removing
some of the regressors into the model according to some
criteria such as the F-test of the significance of the
independent variables[20]. Based on this test, only variables
that are significant are included in the model and any
variable that become insignificant at subsequent steps are
removed from the model. Although, stepwise regression
removes the multicollinearity in the model, this approach
ignores the unique contribution of the excluded variables
in the regression model which could lead to a loss of
power[21].
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Hotelling[22] developed an iterative procedure for
calculating eigenvalues and eigenvectors of any
symmetric matrix, called Principal Component Analysis
(PCA). He defined PCA as a method of transforming the
original independent variables into new uncorrelated
variables. The main objective of PCA is data reduction. In
PCA, the original correlated predictor variables are
replaced by their uncorrelated principal components in a
regression analysis, thereby addressing the problem of
multicollinearity and making the regression model more
stable[23-25].

Lafi and Kaneene[15] also describe how PCA can be
used to correct for multicollinearity. Through a PCA,
linear combinations of predictors are created that are
uncorrelated with each other and explain as much of the
variance in the dataset as possible. Calmes[26] and
Kornblut and Wilson[27] used Principal Component
Regression (PCR) to determine whether test scores and
other economic and education-related variables are good
indicators of economic performance. PCR delivered
useful results in both cases.

The issue of which components to choose for a PCR
has been debated. Mansfield et al.[28]  suggested that the
predictive power in the regression are minimised when
components with small variance are deleted. The criteria
of deletion of principal components in regression are
based on the magnitudes of the eigenvalues of the
predictor variables or statistical tests of the significance of
the components[29]. Kendall[25] , Massy[30], Jeffers[31] and
Hawkins[32] recommend deleting components with small
variances. Hocking[33] used a different approach for
choosing the principal components. Instead of ignoring
components with low variance, he defined a rule for
retaining principal components in regression. 

Ridge regression has been extensively reviewed in
the literature of applied statistics as a method for dealing
with multicollinearity. The purpose of ridge regression is
to reduce the high variances of the estimated coefficients
at the expense of incurring some bias[34].

Niemela-Nyrhimnen and Leskinen[34] illustrate the
use of ridge regression in mitigating the effects of
multicollinearity in structural equation modelling. They
used these two methods with slightly differing ridge
estimation procedures. The methods produced the same
point  estimates  of  path  coefficients.  However,  one
method had smaller standard errors of parameter estimates
and larger squared multiple correlations than the other
one.

Mahajan et al.[35] studied the application of ridge
regression in the presence of multicollinearity when
analysing parameter estimation in marketing models.
They compared OLS estimates and ridge regression
estimates and found that OLS estimates are unbiased with

large variance and ridge estimates are biased but with
smaller variance. According to Mahajan et al.[35] ridge
regression is a method that could overcome
multicollinearity and produce stable estimates that are
closer to the true values of the coefficients the analyst is
trying to develop.

MATERIALS AND METHODS

The research project consists of three sections; data
simulation, regression models and evaluation. A sample
of n = 300 respondents are simulated in order to create a
high collinear independent variables. The regression
model is formulated using the psychometric measures and
the three methods (PCR, ridge regression and stepwise
regression) are applied to overcome the problem of
multicollinearity. The evaluation of the severity of
multicollinearity using VIF and CI techniques is
performed. The study also gives an overview on the
assumptions  on  residuals  for  a  proper  data  analysis
report.

Data simulation: To assess methods of dealing with
multicollinearity data are simulated according to a pre-
specified correlation structure such that there is a strong
relation between the dependent and all independent
variables but a subset of the independent variables are
highly correlated. For the purpose of this research a
dataset is simulated that reflect a real-world scenario in
Psychology related to academic achievement and
cognitive measures.

Gasic-Pavisic et al.[36] state that Locus Cf control
(LOC) is a cognitive component of self-concept. They
define LOC as “the extent to which an individual believes
he or she is at the mercy of external forces (external LOC)
that is the extent to which one is responsible for events
that occur  in  one’s  life  and  the  extent  to  which one
can  control  the  effect of ones actions (internal LOC).
Self-esteem  is  seen  as  an  evaluative  component of
self-concept[36]  and reflects a person’s positive evaluation
of self. According to Gasic-Pavisic et al.[36]  there is a
strong relationship between LOC and self-esteem.

In their research Ahmad et al.[37] show that self-
esteem and academic achievement are strongly related.
Bar-Tal and Bar-Zohar[38]  also suggest that internal LOC
is related to academic performance.

For this analysis a sample of n = 300 respondents are
simulated to reflect the dependence and interdependence
relationships between these four psychometric measures.
To achieve this the following multivariate random normal
variables are simulated using the mvrnorm function of the
MASS library in R[39] with a mean vector of 0 and a
correlation matrix such that all three independent
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variables are strongly correlated with academic
achievement and that LOC and self-esteem are highly
correlated:

Where:
Y = Standardised test scores of academic achievement

of secondary school learners where high values
indicate high achievement

X1 = LOC in standardised form where high values
indicate internal LOC

X2 = Self-esteem in standardised form where high
values indicate high self-esteem

X3 = Intellect in standardised form where high values
indicate high non-verbal reasoning

Regression models
OLS regression: An initial OLS regression is fitted to
illustrate and assess the extent of the multicollinearity in
the data using the regression procedure in SPSS.
According to Chatterjee et al.[2] the linear relationship
between Y and X1, X2 and X3 is formulated as follows:

(1)0 1 1 2 2 3 3Y + X + X + X +     

OLS regression estimates the β2 values by minimising
the sum of squares of the errors. This yields the estimated
regression model[2]:

(2)0 1 1 2 2 3 3
ˆ ˆ ˆ ˆŶ + X + X + X    

Where:
= Unbiased estimated intercept or constant0̂
= Unbiased parameter estimates for variable1̂

In matrix notation the regression model and least
squares estimates of the regression parameters are given
by Eq. 3 and 4, respectively:

(3)OLSy X +  

(4) -1T T
OLS

ˆ X X X y 

Models addressing multicollinearity: For the purpose of
this research three different methods are applied to
overcome the problem of multicollinearity in regression
analysis, namely stepwise regression, PCR and ridge
regression. SPSS is used to generate the output for the
stepwise regression, PCA and PCR. The linear ridge
function in the ridge library of R is used for the ridge
regression analysis.

Stepwise regression: As stepwise regression is a series of
OLS regression models where independent variables are

added and removed according to some specific criteria, it
follows that the regression model and parameter estimates
are essentially the same as in Eq. 3 and 4 with the only
difference the size of the input data matrix. The SPSS
procedure produces models for each step of the stepwise
process. All of these models are evaluated and the optimal
model selected.

PCR: Johnson and Wichern[40] state that PCA is
concerned with explaining the variance-covariance
structure of a set of variables through a few linear
combinations  of  these  variables.  The  general  purposes
of PCA  are  data  reduction  and  interpretation.   It  is a
data  reduction  technique  in  such  a  way  that the
original  correlated  exploratory  variables are 
transformed to a new set of variables the principal
components which are ordered, so that, the first few retain
most of the variation present in all of the original
variables.

PCR incorporates the principal components as the
new predictor variables in regression. PCA uses an
orthogonal transformation to convert data from X onto an
orthogonal basis. It converts X using a linear combination
of its columns into principal components or loadings P
and scores S given by:

(5)TX SP

P contains the coefficients of the linear combinations
of the original variables and S gives the coordinates of X
in the  new  orthogonal  basis  or  the  principal 
component space. The first principal component is such
that it has the highest variance from the data and it keeps
decreasing with subsequent principal components. The
PCR has a least squares solution similar to that in Eq. 3
and 4. However, in terms of the principal components
they are:

(6) -1T T
PCR

ˆ S S S y 

Ridge regression: In ridge regression, the degree of bias
is added to the regression estimates to reduce the standard
errors yielding the more reliable estimates. The
parameters are estimated by adding a small value k to the
diagonal elements of the correlation matrix where k is a
positive quantity:

(7) -1

PCR
ˆ XX'+kI X 'y 

A key obstacle in using ridge regression is to choose
an appropriate value of k[41]. In this analysis 21 different
k values are used ranging from 0.05-1.00 with an
increment of 0.05.
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Evaluation: Various measures are used to assess the
quality of the regression analyses, specifically
assumptions regarding the residuals as well as the model
fit.

Level of multicollinearity: To assess the existence and
extent of multicollinearity in the data, both VIF and CI are
evaluated. The VIF value forms part of the SPSS
regression output. For each independent variable it is
calculated using equation[2]:

(8)j 2
j

1
VIF j 1, 2, ....,p

1-R
 

Where:
= The proportion of variation in variabl2

jR

Xj = Explained by all other variables

Xi, i = 1,..., p, i … j in a regression of Xj on Xi

CI values are calculated as a function of the
eigenvalues of the correlation matrix as in the PCA
procedure using equation[2]:

(9)1
i

i

CI , j 1, 2,..., p


 


Where:
λ1 = The maximum eigenvalue of the correlation matrix
λi = The minimum eigenvalue of the correlation matrix of

size i

Assumptions: According to Chatterjee et al.[2] the
residuals  are  assumed  to  be  independently  and
identically distributed normal random variables. The
Shapiro-Wilk  test[41] tests whether the residuals follow a
normal distribution. The hypothesis:

C H0: the residuals are normally distributed
C H1: the residual are not normally distributed

If the null hypothesis is rejected, the residuals can be
considered to be non-normal. If the null hypothesis is not
rejected, then the assumption of normality is probably
valid.  In  addition  to  the  Shapiro-Wilk test, the
Quantile-Quantile (QQ) plot of the theoretical quantiles
from the normal distribution vs. the sample quantiles are
used to visually assess normality. The histogram of the
residuals is also often used. All these tests are in the stats
library of R[43].

The Durbin-Watson statistic tests the autocorrelation
in regression analysis[2]. It mainly tests whether the
residuals are independently distributed. The statistic is
defined as: 

 (10)
 

n
2

t t-1
t 1

n
2
t

t 1

e -e
d

e










If the value of d is near 2, there is strong evidence
that the residuals are not autocorrelated. A graphical
representation of the residual values vs. predicted values
determines whether any trend or pattern exists that may
indicate a model misfit.

Model fit: The model fit of a regression analysis is
assessed using the overall model p-value from the
ANOVA table, the R2 value, the adjusted R2 value, the
Mean Square Error (MSE) and the parameter estimates.
R2 can be interpreted as the proportion of variation in the
dependent variable that is accounted for by the
independent variables in the regression model[2]. It is
given by:

(11)
E

T

SS
d 1-

SS


SST and SSE the total sum of squared deviation and
sum of squared residuals, respectively, given by:

(12) 2

T iSS y -y

(13) 2

E i iˆSS y -y

According to Chatterjee et al.[2], the adjusted R2 is
used to compare models with differing number of
predictor  variables.  For  n  observations  and  p
variables, it is defined as:

(14)
 
 

E2
a

T

SS / n-p-1
R 1-

SS / n-p


The MSE shows the average over all n residual
values and is given by:

(15)E

1
MSE SS

n


A lower MSE value a better fit. The estimates of the
regression parameters are also assessed in terms of their
significance and interpretability. Since, the data are
simulated such that all three independent variables are
positively correlated with the dependent variables, the
linearity of the predictors should be correctly reflected in
the good model.
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RESULTS AND DISCUSSION

This study presents the analysis produced by the data
simulated. It includes the results of the correlation matrix
to evidence multicollinearity in the data.

Data structure: Multivariate random normal data were
simulated to signify the interrelationship between four
psychological measurements: academic achievement (Y),
LOC (X1), self-esteem (X2) and intellect (X3). All
variables were simulated with mean zero and variance
one.  The tables follow below for illustrating the results.
Table 1 shows the summary statistics. The means and
standard deviations are nearly zero and one respectively.
Table 2 gives the relationship between the academic
achievement and cognitive measures. A strong linear
relationship exists between the dependent variable (Y)
and independent variables (Xi).  The predictors LOC and
self-esteem have a strong interrelation, r = 0.9742 which
indicates that multicollinearity exists in the data.

Ordinary least squares regression: The baseline (Eq. 2)
is first modelled in order to have an initial inspection of
the regression analysis and assess the impact of
multicollinearity. Diagnostic check for outlier is vital for
accurate analysis. Table 3 shows that the assumption of
normality is violated, since, the Shapiro-Wilk test is
>0.05. This is due to the fact that data is highly correlated.
The standard error of the estimate is large. To check for
possible outliers the default SPSS is ±3 with one extreme
observation if using ±2 it gets 16 outliers. Thus, the
removal of outlier is not considered because there is a
possibility that this points are important as part of the
data.

Table 3 shows ANOVA output. ANOVA determines
if the regression is significant. Since, p<0.05, the
regression model is significant. Table 3 shows a good
model with and R2 = 0.9651. The Durbin-Watson tests if
observations are independent. Its value of 1.9030 is close
to 2. This indicates that the residuals are not correlated
after the model is fitted. Table 4 shows that the regression
equation is:

Academicachievement 0.0032+0.9294

LOC-self esteem+0.5861intellect



The equation implies that academic achievement
realization requires an increase in LOC by 0.9294, a
decrease in self-esteem by 0.2646 and an increase in
intellect by 0.5861. This opposes known realities where
academic achievement requires a high LOC, Self-esteem
and Intellect. The discrepancy in the parameter estimates
is caused by the multicollinearity effect. This is indicated
by the VIF which shows a severe multicollinearity
problem. The correlation  between  LOC  and  intellect  is

Table 1: Summary statistics
Variables N Minimum Maximum Mean SD
Y 300 -2.7981 3.8893 0.0149 1.0432
X1 300 -3.0539 2.6993 0.0127 1.0334
X2 300 -3.2324 2.7838 0.0089 1.0263
X3 300 -2.3913 3.0730 0.0037 0.9736

Table 2: Correlation matrix
Variables Y X1 X2 X3

Y 1.0000 0.8126 0.7336 0.7459
X1 0.8126 1.0000 0.9742 0.2663
X2 0.7336 0.9742 1.0000 0.1775
X3 0.7459 0.2663 0.1775 1.0000

Table 3: OLS Model summary
Assumptions Values
Shapiro-Wilk test 0.5787
Durban-Watson statistic 1.9030
ANOVA p-value 0.0000
R2 0.9651
Adjusted R2 0.9647
Standard error of the estimate 0.1959
Mean square error 0.0379

Table 4: OLS parameter estimates
Variables B SE Beta p-values VIF
Constant 0.0032 0.0113 - 0.7753 -
LOC 0.9294 0.0535 0.9206 0.0000 23.8
Self-esteem -0.2646 0.0528 -0.2604 0.0000 22.9
Intellect 0.5861 0.0130 0.5469 0.0000 1.3

positive but in the regression model the self-esteem
coefficient is negative. VIFs of LOC and self-esteem
exceed 10 which signals severe multicollinearity.

Table 5 shows the necessary diagnostics to detect the
effect of multicollinearity. All condition index values are
below 15. However, the variables LOC and Self-esteem
have large variance proportion. Thus, collinearity exist in
spite the lower condition index value.

CI and VIF values surprising give slightly different
results. However, since, the CI value is <15, the severity
of multicollinearity is moderate. Because of the worth of
LOC and Self-esteem if they are removed, the purpose of
the regression analysis would not be fulfilled.

The residuals against the predicted values are not
entirely randomly dispersed, violating the assumption of
homoscedasticity. This means that the variance between
the residual is not constant. This causes the cases with
larger disturbance “noise” to have more “pull” than other
observations.

Residual analysis: Plots for the task of residual analysis
are presented next and then discussed thereafter.

Figure 1 shows in a histogram that the residuals are
symmetrically distributed. Figure 2 displays a plot of
residuals versus predicted values. Homoscedasticity is
evidenced. Therefore, the residuals are not randomly
distributed. Figure 3 is a normal QQ plot showing that the
residuals  are  not  all  aligned  in  the  x-y  axis
symmetry. This signals  the  violation  of  the  normality 
assumption. Therefore, the residuals are not normally
distributed. 
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Table 5: OLS condition indices
Variance proportions
-----------------------------------------------------------------------------------------------------------

Dim Eig CI (Constant) LOC Self-esteem Intellect
1 2.0669 1.0000 0.0001 0.0095 0.0095 0.0308
2 0.9998 1.4378 0.9996 0.0000 0.0000 0.0001
3 0.9118 1.5056 0.0000 0.0011 0.0029 0.8007
4 0.0216 9.7934 0.0003 0.9894 0.9875 0.1685
Dim = Dimension; Eig = Eigenvalue; CI-Condition Index, Con = Constant

Fig. 1: Histogram of residuals

Fig. 2: Residuals vs. predicted values

Fig. 3: Normal QQ plot

Fig. 4: Linear relationship between dependent and
independent variables

Figure 4 is a regression line showing a strong linear
relationship between the dependent and independent
variables.

Stepwise regression: The tables below present the results
of stepwise regression. Table 6 summaries forward
stepwise regression of regression models. The R2 from
model 1-3 increases from 66-97%. However, the R2

change decreases as each variable is added per model due
to multicollinearity that causes parameter estimates to be
unstable. Also, when a variable is added to a model, it
decreases the values of standard errors and MSEs. This
isolates model 2 as the best regression model.

Table 7 also shows that model 2 is the best. The R2

value  increases  when  Intellect  variable  is  added with
p =  0.05 and the parameter estimate signs are in the same
direction. Also, the VIF drastically decreases which
signals the multicollinearity problem. There is a major
change in the residual QQ plot. It displays a normally
distributed pattern amongst the residuals. The results on
both (Fig. 3 and 4) are unchanged probably because of
outlier influences.

Principal component regression: The tables below
present the results. Table 9 is the PCA output whereby
three components were extracted. Component 1 has the
largest variance of 68.9% followed by Components 2 and
3 with variances of 30.4 and 0.7%, respectively.
Components 1 and 2 effectively explain most of the
variation of 99.3%. The dimensionality of the data can be
reduced with little loss of information, thereby eliminating
multicollinearity.

Table 10 shows that Component 1 constitutes LOC
and self-esteem variables and Component 2 consists of
the intellect variable only. Component 1 is associated with
internal motivation and Component 2 has to do with the
IQ of the respondent.

Table 11 is an output of the regression using the
principal components ‘component 1’ and ‘component 2’
as the input variables. This model shows that it is
statistically significant with p<0.05. The assumption of
normality is violated since the Shapiro-Wilk test is not
less 0.05. Hence, the assumption of independence is not
violated. This is an indication that correlation does not
exist between the components. The PCR model is a good
model with R2 = 95%.

Table 12 shows the sign of direction on parameter
estimates as  the  same  and  with  no  multicollinearity. 
The p-value  of  the  constant  is  non-significant  with
value of 0.266. This indicates that the model will be
without the intercept  that  is.  Table  13  shows  the  PCR
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Table 6: Stepwise regression model summary
Models
--------------------------------------------------------------------------------------------------------------------------

Variables 1 2 3
Assumptions
Shapiro-Wilk test p-value 0.8084 0.6444 0.5787
Durban-Watson statistic 2.0423 1.9082 1.9030
Model
Variables in model LOC LOC+Intellect LOC+Intellect+

Self-esteem
ANOVA p-value 0.0000 0.0000 0.0000
R2 0.6604 0.9621 0.9651
R2 change 0.6604 0.3017 0.0030
Adjusted R2 0.6592 0.9619 0.9647
Standard error of the estimate 0.6090 0.2037 0.1959
Mean square error 0.3684 0.0411 0.0379

Table 7: Stepwise regression parameter estimates
Variables B SE Beta p-values VIF
Constant 0.0041 0.0118 0.7260
LOC 0.6672 0.0118 0.6609 0.0000 1.0763
Intellect 0.6107 0.0126 0.5699 0.0000 1.0763

Table 8: Stepwise regression condition indices
Variance proportions

Eigen Condition ---------------------------------------
Dimension value index (Constant) LOC Intellect
1 1.2668 1.0000 0.0014 0.3663 0.3657
2 0.9996 1.1257 0.9979 0.0002 0.0020
3 0.7336 1.3141 0.0007 0.6335 0.6323

Table 9: PCA total variance explained
Initial eigen values
----------------------------------------------------------

Components Total Variance (%) Cum (%)
1 2.0667 68.89 68.89
2 0.9118 30.39 99.28
3 0.0216 0.72 100.00

Table 10: Component matrix
Variables Component 1 Component 2 Component 3
LOC 0.9839 -0.1450 -0.1047
Self-esteem 0.9662 -0.2366 0.1024
Intellect 0.4064 0.9137 0.0099

Table 11: PCR Model summary
Models Values
Assumptions
Shapiro-Wilk test p-value 0.5846
Durban-Watson statistic 1.9000
Models
ANOVA p-value 0.0000
R2 0.9513
Adjusted R2 0.9509
Standard error of the estimate 0.2311
Mean square error 0.0529

condition indices to be <15. This shows that
multicollinearity is minimal at a value of 1 in 3
dimensional surfaces.

Ridge regression: The ridge regression was done for 21
different ridge parameters, ranging from 0-1 with an
increment of 0.05. The ridge trace shows the regression
coefficients or parameter estimates for all 3 independent 

Table 12: PCR parameter estimates
Variables B SE Beta p-values VIF
Constant 0.0149 0.0133 0.267
Internal 0.9144 0.0134 0.8765 0.000 1.00
motivation
Intellect 0.4463 0.0134 0.4278 0.000 1.00

Fig. 5: Ridge trace

Fig. 6: Ridge trace

variables across all ridge parameters. These assist to
determine the place where the lines stabilize. The figures
below are used for this purpose.

It seems from (Fig. 5-8) that as though at the ridge
parameter of 0.4, the lines stabilize. Figure 5-8 show the
change in the estimates and the change in R2 between
ridge parameters. From these graphs it looks like 0.4 is
good enough.

Figure 6 shows that the ridge parameter controls
which regression coefficient is estimated the least. At
ridge parameter = 0.4, the regression coefficient of
variable intellect is least efficient in the estimation. 
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Table 13: PCR condition indices
Variance proportions
---------------------------------------------------------------------------------------------------

Dimension Eigen value Condition index (Constant) Internal motivation Intellect
1 1.0000 1.0000 0.0000 1.0000 0.0000
2 1.0000 1.0000 1.0000 0.0000 0.0000
3 1.0000 1.0000 0.0000 0.0000 1.0000

Table 14: Ridge regression model summary
Models Values
Assumptions
Shapiro-Wilk test p-value 0.9919
Durban-Watson statistic 1.9981
Models
ANOVA p-value 0.0000
R2 0.9154
Adjusted R2 0.9146
Mean square error 0.4912

Table 15: Ridge regression parameter estimates
Variables B SE p-values
Constant 0.0067 - -
LOC 0.3347 0.1467 0.0000
Self-esteem 0.2415 0.1504 0.0000
Intellect 0.4710 0.2176 0.0000

Table 16: Model comparison
Models OLS Step reg PCR Ridge
R2 0.9651 0.9621 0.9513 0.9154
MSE 0.0379 0.0411 0.0529 0.4912
Constant 0.0032 0.0041 0.0149 0.0067
LOC 0.9294 0.6672 0.9144 0.3347
Self-esteem -0.2646 NA 0.2415
Intellect 0.5861 0.6107 0.4463 0.4710
OLS = Ordinary Least Squares; Step Reg = Stepwise Regression; PCR
= Principal Components Regression; Ridge = Ridge regression

Fig. 7: Ridge trace

Figure 7 indicates the LOC parameter change from
0.41 to 0 when  ridge  parameter = 0.4. Figure 8 shows
that self-esteem parameter changes from -0.41-0 when
ridge parameter = 0.4. In Fig. 9, intellect parameter
change from -0.01-0.015 when ridge parameter = 0.4. In,
Fig. 10 of residual vs. predicted, a random spread is not
indicated. This could be due to the resulting penalization
of the regression.

Table 14 demonstrates that ridge regression model is
statistically significant with p-<0.05. The assumption of
normality is violated, since, the Shapiro-Wilk test is not
less 0.05. Hence, the assumption of independence is not 

Fig. 8: Ridge trace

Fig. 9: Ridge trace

violated. This is an indication that correlation does not
exist between the components. The PCR Model is a good
model with R2 = 92%.

Table 15 shows the sign of direction on parameter
estimates as the same and with no multicollinearity. The
p-value of the constant is significant with value of 0.0067.
This shows that the model will have a nonzero intercept.

Model  comparison:  The  OLS  Model  has the highest
R2 = 0.97% and least MSE = 0.0379 compared to the
other three models. This identifies OLS as the best model.
However, OLS showed shortcomings such as parameter
estimate instability and collinearity.

Stepwise regression model also showed suitability
with R2 = 96% and MSE = 0.041. Thus, it has the smallest
variance. Its main problem though is that it excludes one
of the variables (Self-esteem) that is vital for inferences
on   psychometrical   measures.   PCR   Model   produced
R2 = 95% and MSE = 0.052. The parameter estimate had
the same sign of direction. This meant that the variables
are independent.

Lastly, ridge regression has a good R2  = 0.91 but its
MSE = 0.491 is the highest amongst the four models. This
model  showed  to  be  having  stable parameter estimates, 
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Fig. 10: Residual vs. predicted for ridge regression model

the assumptions of normality and random distribution
hold. However, since, its residuals showed a linear shape,
it suggests that a transformation should be performed.
From the four models, PCR is superior to predict the
academic achievement of school learners.

CONCLUSION

Multicollinearity is a common problem in research
and statistical analyses. It is particularly significant when
the aim is to predict a dependent variable among a set of
independent that share some characteristics. The OLS
Model produced in this research paper, this model has the
highest R2 among the other models but with imprecise
regression coefficients. 

The advantage of stepwise regression model is that it
can produce as many different models using variable
selection. Three psychometric measures were examined
but Model 2 excluded self-esteem. This expresses that
academic achievement can be obtained regardless of
whether a learner has self-esteem or not. This model is
thus biased towards learners who have low self-esteem.
Ridge regression displayed the least parameter estimates
in a model in order to eliminate those that are correlated
and it can also handle data with outliers. But for this data
ridge regression performed the least in this data analysis
and it did not produce the desired results.

The PCR firstly removes collinearity factor in that
data and then fit a regression model using uncorrelated
variables ‘components’. This model can explain 95 % of
variability.

RECOMMENDATIONS

It is recommended that diagnostic analysis should be
performed firstly in order recognise any existence of
multicollinearity. Also, other models available in modern
literature such as partial least squares and factor analysis
using different rotation should be tried out in order to
remedy the effects of multicollinearity.
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