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Abstract: In this study, we employ the near-two-
factorization to develop a new type of simple k-cycle
decomposition of the 2-fold complete graph 2Kv, called a
Butterfly k-cycle decomposition of 2Kv. Especially, we
focus   on   proving   the   existence   of   cyclic   Butterfly
(v-1/2)-cycle decomposition of 2Kv for the case v / 3
(mod 12) using the difference method for constructing the
starter cycles.

INTRODUCTION

Throughout this study, all graphs are considered
undirected  of  odd  order  have  vertices  in  Zv.  Kv  will
denote the  complete  graph  of  order v and λKv will
denote the λ-fold complete graph of order v which is
obtained  by  replacing  each  edge  of  Kv  by  λ  parallel
edges.

A k-cycle decomposition of λKv is a pair (V, C)
where,  V  is  the vertex set of λKv and C is a multiset of
k-cycles  that  partition the multiset E(λKv). It is cyclic if
V = Zv and for each k-cycle C = (c1, c2, ..., ck) in C we
have C+1 = (c1+1, c2+1, ..., ck+1) (mod v) is also in C and
it  is  simple  if its cycles are all distinct. A multiset S of
k-cycles that generates the multiset C by repeatedly
adding 1 modulo v to S is called a starter of cyclic k-cycle
decomposition  of  λKv.  A k-cycle decomposition of λKv

is  also  called  a  (λKv, Ck)-design.  In  general,  a  (λKv,
H)-design is an edge-decomposition of λKv into subgraphs
each of which is isomorphic to H[1].

The existence problem of k-cycle decompositions of
the λ-fold complete graph has received a prominent
attention in recent years. The fundamental case λ = 1 has
been  completely  solved by Alspach and Gavlas[2] and by
Sajna[3] and for the case λ = 2 by Alspach et al.[4]. In
particular, the existence of cyclic k-cycle decompositions
of Kv has been solved when v / 1 or k (mod 2k)[5-7], k is
even  with  v>2k,  k  is  a  prime  with  the  exception  of
(v, k) = (9, 3)[5], k#32 or k is twice a prime power[8], k is
thrice a prime[9]. Further results on cycle decompositions
in the surveys[10, 11].

The necessary and sufficient conditions for the
existence of cyclic v-cycle decomposition of λKv and for
the  existence  of  simple  cyclic  v-cycle  decomposition
of   λKv   in  case  of  v  prime  have  been  proved  by
Buratti et al.[12]. The necessary and sufficient conditions
for decomposing λKv into λ-cycles and into cycles with
prime length have been established by Smith[13]. Recently,
Bryant et al.[14] proved that there exists a k-cycle
decomposition of λKv if and only if 3#k#v,  λ(v-1) is even
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and k divides the number of edges in λKv. More general
results for the existence of decomposition of λKv into
cycles of varying lengths have been very recently
presented by Alqadri and Ibrahim[15] and Bryant et al.[16].
Nevertheless,  the  existence  problem for cyclic k-cycle
decomposition of λKv is still open in general.

A  path  cover  of  a  graph  G is a collection of
vertex-disjoint paths of G that covers the vertex set of G.
For more details and developments regarding the path
cover and the vertex cover problems, one may refer to
Steiner[17] and Arumugam and Hamid[18].  A k-factor in a
graph G is a spanning subgraph in which each vertex has
degree k while a near-k-factor is a spanning subgraph in
which exactly one isolated vertex (vertex of degree 0) and
all remaining vertices have degree k. The edge
decomposition   of   G   into   k-factors   (respectively, 
near-k-factors) is called a k-factorization, (respectively, a
near-k-factorization). A comprehensive background on
factors and factorizations can be found by Wallis[19],
Akiyama and Kano[20] and Horsley[21].

In this study, we define a new type of simple k-cycle
decomposition of 2Kv whose k-cycles can be partitioned
into near-two-factors, called a Butterfly k-cycle
decomposition of 2Kv. Some definitions, notations and
introductory results are given in Section 2. Then, in
Section 3, the difference method is used to construct a
cyclic Butterfly (6n+1)-cycle decomposition of 2K12n+3.
Finally, Section 4 discusses the conclusions and future
work.

INTRODUCTORY RESULTS

This study provides some definitions, notations and
results that will be required to prove our main results in
the next section. First, we review the following
definitions.

Definition 2.1; Buratti[22]: Let G be a graph and xy be an
edge in G. The difference of an edge xy is defined as d(x,
y) = ±|y-x|.

Definition 2.2; Buratti[22]: Let G = (V(G), E(G)) be a
graph. The multiset:

    G y x x, y V G , xy E G     

is called the list of differences from G. More generally,
for a multiset g = {G1, G2, ..., Gn} of graphs, the list of
differences  from  G  is the multiset 1 2 ng G G , ..., G    

which is obtained by linking together the (ΔGi)’s.

Definition 2.3; Buratti et al.[12]: Let C be a k-cycle in
λKv. A cycle orbit of C, denoted Orb(C) is a set of distinct
k-cycles in {C+i|i0Zv}. A cycle orbit of C is called full if
its cardinality is v, otherwise the cycle orbit of C is short.

The next lemma is a particular consequence of the
results developed by Buratti et al.[12]. It will be crucial for
proving our main results.

Lemma 2.4: Let S be a multiset of k-cycles of λKv. Then 
S is a starter of cyclic k-cycle decomposition of λKv if and
only if ΔS covers Z*

v = Zv-{0} exactly λ times.
In the following, we define the relative path, relative

cycle and alternating arithmetic path and then we
formulate some related results that will be the basis for
constructing a starter of cyclic Butterfly (6n+1)-cycle
decomposition of 2K12n+3.

Definition  2.5:  Let  G  be  a  graph  of  order  v, Pn / [x1,
x2, ..., xn]  be  an  n-path  of  G and Cn = (x1, x2, .., xn) be
an n-cycle of G:

C The n-path = [v-x1, v-x2, ..., v-xn] is called thenP

relative path of Pn

C The n-cycle = [v-x1, v-x2, ..., v-xn] is called thenC

relative cycle of Cn

Lemma  2.6:  Let  G  be  a  graph  of  order  v.  If    isC

a  k-cycle  of  G  and  is  the  relative  cycle  of  C, C

then ΔC = Δ C.

Proof: Suppose C = (x1, x2, .., xk) and = (y1, y2, ..., yk)C

are k-cycle of G and its relative cycle, respectively. The
list of differences from C and  can be defined as:C

(1)   i i 1 1 kΔC x x |i 2,3, ,k x x      

(2)    i i-1 1 kΔC y y |i 2,3, ,k y y      

Since, is the relative path of C, then yi = v-xi for allC

i = 1, 2, ..., k. Hence, substituting yi = v-xi into (2), we
obtain:

    
      

 

i i 1

1 k i i 1

1 k

ΔC v x v x |i 2,3, ,k

v v x x x |i 2,3, ,k

x x ΔC





      

        

  


x

Lemma 2.7:  Let  G  be  a  graph  of  order  v.  If C1 is a
k-cycle of G and C2  is the relative cycle of C1, then
orb(C1)…orb(C2).

Proof: Let 1 = (c1, 1, c1, 2, ..., c1, k) be a k-cycle of G and let
C2 = (c2, 1, c2, 2, ..., c2, k) be the relative cycle of C1. Assume
by contrary that orb(C1) = orb(C2), then there exists an
integer i0Zv such that C2 = i+C1. This implies that:

(3)2, j 1,jc i c for all j 1, k 2, , .   
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Since, C2  is the relative cycle of C1, then:

(4)2, j 1,jc v c for all j 1,2, , k    

Solving (Eq.3) and (4) for c1, j  and c2, j yields:

1, j 2, j

v i v i
c and c for all j 1,2, , k

2 2

 
   

This contradicts with the fact that C1 and C2 are
actually k-cycles. Thus, C1 and C2 must have different
orbits, so orb(C1)…orb(C2). An alternating arithmetic path
is a path with two sets of vertics satisfying certain
conditions as defined.

Defination 2.8: Let m and n be positive intergers with
n#m#n+1. An (m+m)-alternating arithmetic path, denoted
by   AAP(m+n)   is   a  path  of  length  m+n  with  vertex
set V = {x1, x2, ..., xm}c{y1, y2, ..., yn} and edge set E =
{{xi, yi}}|I = 1, 2, ...., n}c{yi, xi+1}|i = 1, 2, ..., m-1 such
that the following properties are satisfied:

C xi-xi-1 is constant for all 2#i#m
C yi-yi-1 is consatnt for all 2#i#n

Defiantion 2.9: Let AAP(m+n) be an (m+n)-alternating
arithmetic path. The list of differences from AAP(m+n) is
the multiset:

   i i

i+1 i

y -x
AAP m+n

x -y 1 i m-11 i n

                   

 According to defination 2.8, the (m+n)-alternating
arthimetic path either has odd order (2n+1) when m = n+1
or has even order (2n) when m = n. Throughout, we use
the following notations for (m+n)-alternating arithmetic
path of odd order and even order, respectively:

    

     

1 1 2 2 n
i i 2n+1

n n+1

1 1 2 2 n n i i 2n

x ,y ,x ,y ,...,x ,
AAP 2n+1 x ,y

y ,x

AAP 2n x ,y ,x ,y ,...,x ,y x ,y

 
   

 
 

Next, we define a new way of writing the cycle as
linked vertex-disjoint paths. This way will be used mainly
to prove the existence results in the following section.

Defination 2.10: Let Cn be an n-cycle, k$2 b a positive
integer and let P = {P1, P2, ..., Pk} be a path cover of Cn.
The set of k edges in Cn taht links the end of Pi with the
start of Pi+1 for all i = 1, 2, ..., k where Pk+1 = P1 is called
the link set of P.

Lemma 2.11: Let Cn be an n-cycle, P = {P1, P2, ..., Pk} be 
a path cover of Cn and E’ = {e1, e2, ..., ek} be a link set of
P. Then, we have Δcn = ΔP ΔE’.

Proof: Let V(P) = Ur i= 1 V(Pi) be the set of vertices of P
and E(P) Ur i= 1 V(Pi) the set of edges of P. Based on
defination 2.2, the list of differences from C is defined as
a multiset consisting of the difference for each edge in C
as follows:

(5)      C d a,b a,b V C ,ab E C   

Since, P is a path cover of C, then:

(6)   V C V P

Also, from the defination of links set of P, we obatin:

(7)   E C E P E' 

Subsituting (Eq. 6) and (7) into (5) yields:

      C d a,b a,b V P ,ab E P E'    

        i

i

d e
d a,b a,b V P ,ab E P

e E'

P E'

      
  

  

Remark 2.12: Let Cn be an n-cycle, P = {P1, P2,..., Pk} be
a path cover of Cn and E’ = {e1, e2,..., ek} be a link set of
P. The cycle Cn can be expressed as linked vertex-disjoint
paths as follows:

 n 1 2 kC P ,P ,...,P

Before closing this study, we provide an example
which demonstrates the concepts discussed above.

Example 2.13: Let G - 2K11 and C = (1, 2, 10, 4, 9, 7, 5,
6, 3, 8) be a 10-cycle of G. Then C can be written as
linked vertex-disjoint paths as follows:

    1 1 2 2C Q ,AAP 4 ,Q ,AAP 4

Where,  Q1  =  (1)  and  Q2  =  (7)  are  trival  paths  and
AAP1(4) = (2, 10, 4, 9) = (2i, 11-i)4 and AAP2 (4) = (5, 6,
3, 8) = (7-2i, 2i+4)4 are 4-alternating arithmetic paths. In
addition, the set of four edges E’ = {{1, 2}, {9, 7}, {7, 5}
{8, 1}} that  links the paths Q1, AAP1(4), Q2 and AAP2(4),
respectively along the cycle C is considered the links set
for the path cover P = {Q1, AAP1(4)}, Q2 AAP2(4)}.
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Cyclic butterfly (6n+1)-cyclic decomposition of 2K12n+3:
In this study, we define a butterfly k-cycle decomposition
of 2Kν. Then, the existence of cyclic butterfly (6n+1)-
cycle decomposition of  2K12n+3 is proved using the
difference method in constructing the starter cycles.

Defination 3.1: Let k and ν be integer with 2<k<ν. A
butterfly k-cyclic decomposition of a graph 2Kν, denoted
by BkCD (2Kν) is an array of k-cycles which satisfies the
following conditions:  

C The  cycles  in  row i  from  a  near-two-factor  with
focus i

C The cycles associated with the rows contain no
repetitions

C The cycles associated with the rows from a k-cycle
decomposition of 2Kν

A Butterfly k-cycle decomposition of a graph 2Kν

with vertex set Zν is cyclic if C = {C1, C2, ..., Cn} is a set
of all k-cycles in BkCD(2Kν), then we also have C =
{C1+1, C2+1, ...,Cn+1} where, Ci+1 denotes the k-cycle
obtained by adding 1 modulo ν to each vertex of the cycle
Ci. A set S of k-cycles which generates all the cycles of
BkCD (2Kν) by repeatedly adding 1 modulo ν is called a
starter of cyclic BKCD (2Kν).

To construct a cyclic butterfly k-cyclic
decomposition of 2Kν it is sufficient to exhibit a stater of
cyclic k-cyclic decomposition of 2Kν which satisfies a
near-two-factor and contains no two cycles in the same
orbit. We now provide an example to illustrate the
defination above.

Example 3.2: Let G = 2K15 and S = {C1, C2} be a set of
7-cycles of G such that C1 = (13, 8, 9, 11, 5, 123, 1) and
C2 = (2, 7, 6, 4, 10, 3, 14).

Immediately, it can be noticed that the 7-cycles of S
are vertex-disjoint and cover each nonzero element of Z15

exactly once. In other words S forms a near-two-factor
with focus zero.

In order to show that S = {C1, C2} is a set of stater
cycles for cyclic 7-cycle decomposition of G, we need to
calculate the list of differences from S as illustrates in the
Table 1.

Based on Table 1, since, ΔS = ΔC1 ΔC2 covers each
element  in  Z15-{0}  exactly  twice,  then  from Lemma
2.4 S = {C1, C2} is a stater of cyclic 7-cycle
decomposition of G.

Since, the sum of each pair of corresponding vertices
of C1 and C2 is equal to 15 (the order of G), then C2 is the
relative cycle of C1 and so by Lemma 2.7 orb (C1) … or b
(C2). Therefore, all the generated cycles by repeatedly
adding 1 modulo 15 to S = {C1, C2} contain no
repetitions.

Table 1: The list of differences from S = {C1, C2 }
7-cycles The list of differences
C1 = (13, 8, 9, 11, 5, 12, 1) {±5, ±1, ±2, ±6, ±7, ±11, ±12}
C2 = (2, 7, 6, 4, 10, 3, 14) {±5, ±1, ±2, ±6, ±7, ±11, ±12}

Table 2: A cyclic butterfly 7-cycle decomposition of 2K15

Focus Orb(C1) Orb(C2 )
i = 0 (13, 8, 9, 11, 5, 12, 1) (2, 7, 6, 4, 10, 3, 14)
i = 1 (14, 9, 10, 12, 6, 13, 2) (3, 8, 7, 5, 11, 4, 0)
i = 2 (0, 10, 11, 13, 7, 14, 3) (4, 9, 8, 6, 12, 5, 1)
! ! !

i = 14 (12, 7, 8, 10, 4, 11, 0) (1, 6, 5, 3, 9, 2, 13)

Now, S satisfies all the conditions to be a starter of
cyclic Butterfly 7-cycle decomposition of G. Table 2
illustrates how the starter cycles generate all the cycles of
cyclic B7CD.

In the following, we explicitly construct a cyclic
Butterfly (6n+1)-cycle decomposition of 2K12n+3. Since,
the construction is different depending on whether n is
odd or even, we classify the construction into two cases:
when n is odd and when  is even.

Lemma 3.3:  For  any  positive  odd  integer  n,  there
exists  a  cyclic  Butterfly  (6n+1)-cycle  decomposition 
of 2K12n+3.

Proof: Let n be a positive odd integer. Two cases are
considered.

Case 1: n = 1. This case has been proved in Example 3.2.

Case 2: n>1. Let C1 and C2 be the (6n+1)-cycles of 
2k12n+3  defined  as  linked  vertex-disjoint  paths  as
follows:

(8)
      
      

1 1 2 3

2 1 2 3

C AAP 4n ,AAP n 1 ,AAP n

C AAP 4n ,AAP n 1 ,AAP n

 

 

where:

   
 

1

4n

AAP 4n 2,12n 1,6,12n 5, ,8n 2,4n 3

4i 2,12n 4i 3

     

   

   
 

2

n+1

AAP n 1 12n 2,3,12n 2,7, ,10n 4,2n 1

12n 4i 6,4i 1

      

   

   
 

3

n

AAP n 2n 3,10n 2,2n 7,10n 6, ,4n 3,8n 4,4n 1

2n 4i 1,10n 4i 2

        

    

       1 4n4n
AAP 4n v 4i 2 ,v 12n 4i 3 12n 4i 5,4i          

     
 

2 n+1

n+1

AAP n 1 v 12n 4i 6 ,v 4i 1

4i 3, 12n 4i 4

        
   
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Fig. 1: The construction of C1 and C2 in 2K12n+3 when n>1 is an odd integer

     
 

3 n

n

AAP n v 2n 4i 1 ,v 10n 4i 2

10n 4i 4,2n 4i 1

        
    

Since, n is a positive odd integer, then any 4n-
alternating arithmetic path and any (n+1)-alternating
arithmetic path have even order while any n-alternating
arithmetic path has an odd order. As illustrated in Fig. 1,
the construction of C1 and C2 can be described in terms of
their vertices as Ci = (ci, 1, ci, 2, ..., ci, 6n+1) for i = 1, 2.

In the construction above, we note that c1, i’S form the
following increasing sequences:

C C1, 1<C1, 4n+2<C1, 3<C1, 4n+4<þ<C1, n<C1, 5n+1 in the
interval [2, 2n+1]

C C1, 5n+2<C1, n+2<C1, 5n+4<C1, n+4<þ<C1, 6n+1<C1, 2n+1 in the
interval [2n+3, 4n+2]

C C1, 4n<C1, 2n+3<C1, 4n-2<C1, 2n+5<þ<C1, 2n+4<C1, 4n-1<C1, 2n+2

in the interval [4n+3, 8n-1]

C C1, 2n<C1, 6n<C1, 2n-4<C1, 6n-4<þ<C1, n+3<C1, 5n+3 in the
interval [8n+3, 10n-2]

C C1, n+1<C1, 5n<C1, n-1<C1, 5n-2<þ<C1, 2<C1, 4n+1 in the
interval [10n+1, 12n+2]

The vertices of C1 form increasing sequences in
disjoint intervals, then we can say that the vertices of C1

are pairwise distinct and then C1 is actually a
(6n+1)-cycle. In contrast, from (Eq. 8), we can deduce
that c2, i = v-c1, i for all i = 1, 2, …, 6n+1 and this implies
that C2 is the relative cycle of C1 in 2K12n+3. Consequently,
since, C1 is actually a (6n+1)-cycle, it follows that C2 is
also actually a (6n+1)-cycle.

Now, we shall prove that the set of cycles S = {C1,
C2} satisfies the conditions of cyclic Butterfly
(6n+1)-cycle decomposition of 2K12n+3. To render this
proof easier to follow, we shall divide this proof into three
parts as follows:

2430

C1, 1 = 2 

C1, 2 = 12n-1 

C1, 3 = 6 

C1, 4 = 12n-5 

C1, 4n-1 = 
8n-2 

…

C1, 4n-1 = 4n+3 

AAP1 (4n) = [4i-2, 12n-4i+3] 4n  
AAP22 (n+1) = [12n-4i+6, 4i-1] 4n  
AAP3 (n) = [2n+4i-1, 10n-4i+2] 4n  

C2, i = v-C1, i for i = 1, 2, …, 6n+1 

AAP1 (4n) 

AAP3 (n) 

AAP2 (n+1) 

C2, 4n 

C2, 4n-1 

C2, 4 

C2, 3 

C2, 2 

C2, 1 

C2, 4n+1 

C2, 4n+2 

C2, 4n+3 

C2, 4n+4 

C2, 5n 

C2, 5n+1 

C2, 5n+2 

C2, 5n+3 

C2, 5n+4 

C2, 5n+5 

C2, 6n-1 

C2, 6n 

C2, 6n+1 

AAP3 (n) 

AAP1 (4n) 

AAP2 (n+1) 

C1, 6n-1 = 
8n+4 

C1, 6n-1 = 4n-3 

C1, 6n+1 = 4n+1 

C1, 5n+5 = 10n-6 

C1, 5n+4 = 2n+7 

C1, 5n+3 = 10n-2 

C1, 5n+1 = 2n+1 

C1, 5n+2 = 2n+3 

C1, 5n  = 10n+4 

C1, 4n+4  = 7 

C1, 4n+3  = 12n-2 

C1, 4n+2  = 3 

C1, 4n+1  = 12n+2 

.

. 

. 

.

. 

. 

.

. 

. 

.

. 

. 
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Part 1: In this part, we prove that S = {C1, C2} forms a
near-two-factor. This will be proved by showing that the
union of vertex sets of C1 and C2 covers each nonzero
element of Z12n+3 exactly once. The vertex sets of C1 and
C2 can be calculated by the union of vertex sets of all
linked paths in both C1 and C2, respectively:

(9)          1 1 2 3V C V AAP 4n V AAP n+1 V AAP n  

(10)          12 2 3V C V AAP 4n V AAP n+1 V AAP n  

where:

      

   

      

   

      

4n 4n

2 2

1

i 1 i 1

n+1 n+1

2 2

2

i 1 i 1

n+1 n+1

2 2

3

i 1 i 1

V AAP 4n 4i-2 | | 12n-4i+3

2, 6, ..., 8n-2 12n-1, 12n-1, 12n-5, ..., 4n+3

V AAP 4+1 12n-4i+6 | | 4i-1

12n+2, 12n-2, ..., 10n+4 3, 7, ..., 2n+1

V AAP n 2n+4i-1 | | 10n-4i+2

2n+

| | | |

| | | |

| | | |

 

 

 

 

 

 





   

      

   

      

   

  

4n 4n

2 2

1

i 1 i 1

n+1 n+1

2 2

2

i 1 i 1

n+1

2

3

i 1

3, 2n+7, ..., 4n+1 10n-2, 10n-6, ..., 8n+4

V AAP 4n 12n-4i+5 | | 4i

12n+1, 12n-3, ..., 4n+5 4, 8, ..., 8n

V AAP n+1 4i-3 | | 12n-4i+4

1, 5, ..., 2n-1 12n, 12n-4, ..., 10n+2

V AAP n 10n-4i

| | | |

| | | |

| |

 

 



 

 









   

   

n-1

2

i 1

+4 | | 2n+4i+1

10n, 10n-4, ..., 8n+2 2n+5, 2n+9, ..., 4n-1

| |






As shown above, each nonzero element of Z12n+3

occurs exactly once in . Since, any cycle is   1 2V C V C

a 2-regular graph and = Z*12n+3, then the set   1 2V C V C

of cycles S = {C1, C2} satisfies the near-two-factor with
focus zero.

Part 2: This part shows that the set of cycles S = {C1, C2}
is a starter of cyclic (6n+1)-cycle decomposition of
2K12n+3 (namely that the list of differences from S covers
Z*12n+3 exactly twice). The list of differences from S is
defined as  and from Lemma 2.11, the   1 1S C V C   

list of differences from C1 is:

          
        

1 1 2

3

C AAP 4n d 4n+3, 12n+2 AAP n+1

d 2n+1, 2n+3 AAP n d 4n+1, 2

   



  

 

 1 i i i 1 i

4n 4n-2
AAP 4n y -x 1 i x -y 1 i

2 2

4n 4n-2
12n-8i+5 1 i 12n-8i+1 1 i

2 2

3n 3n+2 4n-2
12n-8i+5 1 i 12n-8i+5 i

2 2 2

3n 3n+2 4n-2
12n-8i+1 1 i 12n-8i+1 i

2 2 2


              
   

            
   

          
   

        
  





 



   
   
   
   

 2 i i i 1 i

12n-3, 12n-11, ..., 5 6, 14, ..., 12n-2

3, 11, ..., 4n-5 12n, 12n-8, ...,8n+8

12n-7, 12n-15, ..., 1 10, 18, ..., 12n+2

7, 15, ..., 4n-9 12n-4, 12n-12, ...,8n+12

n+1 n-1
AAP n+1 y -x 1 i x -y 1 i

2 2

12n-








              
   



 

 

 





   
   

 3 i i i 1 i

n+1 n-1
8i+7 1 i 12n-8i+3 1 i

2 2

12n-1, 12n-9, ..., 8n+3 4, 12, ..., 4n

12n-5, 12n-13, ..., 8n+7 8, 16, ..., 4n-4

n-1 n-1
AAP n y -x 1 i x -y 1 i

2 2

n-1 n-1
8n-8i+3 1 i 8n-8i-1 1 i

2



           
   

              
   

       
 



 







   
   
    
         

2

8n-5, 8n-13, ..., 4n+7 4n+8, 4n+16, ..., 8n-4

8n-9, 8n-17, ..., 4n+3 4n+12, 4n+20, ..., 8n

d 4n+3, 12n+2 8n-1, 4n+4

d 2n+1, 2n+3 2,12n+1 d 4n+1, 1, 2 4n-1, 8n+4

   
 



 

 



Now, we observe that each nonzero element of Z12n+3

appears exactly once in (ΔC1). Since, C2 is the relative
cycle of C1, then by Lemma 2.6, we obtain Δ(C1) = Δ(C2).
Thus, we conclude that each nonzero element of Z12n+3

appears exactly twice in ΔS. According to Lemma 2.4, for
all odd integer n>1, the set of cycles S = {C1, C2} is a
starter of cyclic (6n+1)-cycle decomposition of 2K12n+3.

Part 3: We show that all the generated cycles from the
starter S = {C1, C2} contain no repetitions by showing that
all the cycles of  have different orbit.

Clearly, since, C2 is the relative cycle of C1, then
from Lemma 2.7, we have orb(C1) … orb(C2). Thus, all the
generated cycles by repeatedly adding 1 modulo 12n+3 to 
S = {C1, C2} contain no repetitions.

From the former three parts, all the conditions of
cyclic Butterfly (6n+1)-cycle decomposition of 2K12n+3 are
satisfied. Thus, for any odd integer n>1, the set of cycles
S = {C1, C2} is a starter of cyclic Butterfly (6n+1)-cycle
decomposition of 2K12n+3.

Lemma 3.4: For any positive even integer n, there exists
a cyclic Butterfly (6n+1)-cycle decomposition of 2K12n+3.

Proof: Let n be a positive even integer. Let, C1 and C2 be
the (6n+1)-cycles of 2K12n+3 defined as:
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Fig. 2: The construction of C1 and C2 in 2K12n+3 when n is a positive even integer

(11)
1 1 2 3

1 2 3

C (AAP (4n, AAP (n+1), AAP (n))

C2 (AAP (4n, AAP (n+1), AAP (n))





Where:

1

4n

2

4n

3

n

1

AAP (4n) [2, 12n-1, 6, 12n-5, ..., 8n-2, 4n+3]

[4i-2, 12n-4i+3]

AAP (n 1) [12n+2, 3, 12n-2, 7, ..., 10n+6, 2n-1, 10n+2]

[12n-4i+6, 4i-1]

AAP (n) [10n, 2n+5, 10n-4, 2n+9, ..., 8n+4, 4n+1]

[10n-4i+4, 2n+4i+1]

AAP (4n) [v (




 





  4n

4n

2 n+1

n+1

3 n

n

4i-2), v-(12n-4i+3)]

[12n-4i+5, 4i]

AAP (n 1) [v-(12n-4i+6), v-(4i-1)]

[4i-3, 12n-4i+4]

AAP (n) [v-(10n-4i+4), v-((2n+4i+1)]

[2n+4i-1, 10n-4i+2]



 



Since, n is a positive even integer, then any
4n-alternating arithmetic path and any n-alternating
arithmetic path have even order while any
(n+1)-alternating arithmetic path has  an  odd  order.  To 

make  the  construction  in  Eq.  11  easier  to  understand,
Fig. 2 illustrates the construction of C1 and C2 in terms of
their vertices as Ci = (ci, 1, ci, 2, ..., ci, 6n+1) for i = 1, 2.

This construction is similar to the construction of C1

and C2 in 2K(12n+3), when n is an odd integer greater than
one (that is proved in the previous lemma) with slight
differences in the construction of AAP2(n+1), AAP3(n),

 and  By applying the same strategy2AAP (n 1)
3AAP (n).

of proof as in Lemma 3.3, it can be proved that for any
positive even integer n, the set of cycles {C1, C2} is a
starter of cyclic Butterfly (6n+1)-cycle decomposition of
2K(12n+3).

Theorem 3.5: For every v = 3 (mod 12) with v$15, there
exists a cyclic Butterfly (v-1)/2)-cycle decomposition of
2Kv.

Proof: Immediate from Lemma 3.3 and Lemma 3.4. By
reviewing the construction of a starter of cyclic Butterfly
(6n+1)-cycle  decomposition  of  2K(12n+3)  as  shown  in
Fig. 1 and 2, the construction has a butterfly shape in
which each cycle represents a side of symmetrical
butterfly wings. If given one cycle C of the starter set, the
other is the relative cycle of C.
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AAP1 (4n) = [4i-2, 12n-4i+3] 4n  
 

AAP22 (n+1) = [12n-4i+6, 4i-1] n+1  
 

AAP3 (n) = [10n-4i+4, 2n+4i+1] n  

C2, i = v-C1, i for i = 1, 2, …, 6n+1 

C2, 4n 

C2, 4n-1 

C2, 4 

C2, 3 

C2, 2 

C2, 1 

C2, 4n+2 

C2, 4n+1 

C2, 4n+4 

C2, 5n 

C2, 5n+1 

C2, 5n+2 

C2, 5n+3 

C2, 5n+4 

C2, 5n+5 

C2, 6n 

C2, 6n+1 

C1, 1 = 2 

C1, 2 = 
12n-1 

C1, 3 = 6 

C1, 4 = 
12n-5 

C1, 4n-1 = 
8n-2 

C1, 4n-1 = 
4n+3 

AAP1 (4n) 

AAP3 (n) 

AAP2 (n+1) 

C1, 6n-1 = 
8n+4 

C1, 6n+1 = 
4n+1 

C1, 5n+5 = 
2n+9 

C1, 5n+2 = 
10n

C1, 5n+3 = 
2n+5 

C1, 5n+4  = 
10n-4

C1, 4n+4  = 
7

C1, 5n+1 = 
10n+2

C1, 5n = 
2n-1

C1, 5n-1= 
10n+6 

…
 

C1, 4n+3 = 
12n-2

C1, 4n+2  = 
3
C1, 4n+1 = 
12n+2

AAP3 (n) 

AAP1 (4n) 

AAP2 (n+1) 
…

 

…
 

C2, 5n-1 

C2, 4n+3 
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CONCLUSION

This study has proposed the Butterfly k-cycle
decomposition of 2Kv as an edge-decomposition of 2Kv

into distinct k-cycles satisfy the near-two-factorization. In
particular, the difference method has been exploited to
construct  cyclic  Butterfly  (v-1)/2)-cycle  decomposition
of 2Kv for the odd case v = 3 (mod 12) and this
construction has been exemplified for the case v = 15. We
expect this study can be developed and extended to
construct cyclic Butterfly k-cycle decomposition of 2Kv

for the case v odd.
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