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Abstract: It is known that Non linear Partial Differential
Equations (NPDEs) play an important role in engineering
and applied physical sciences, Burger’s equation has been
the center of study for many researchers because of its
vast application in physics and engineering problems and
is modeled as one types of (NPDEs). There are several
methods to solve Burger equation. The main purpose of
this paper is to propose a new numerical method by
applying the Hopf-Cole Transformation method (H-CT)
which converts Burger’s equation into  heat equation
coupling with Runge-Kutta 6th order method (RK6) and
the help of Method of Line (MOL) that transpose the
converted heat equation into a simple system of ordinary
differential equations, the results were compared with the
exact Differential Transform Method (DTM). Finally, this
comparative study show the reliability and efficiency of
the proposed method throw numerical examples which is
closed to the exact solution.

INTRODUCTION

In the last years more scientists have interest in the
investigation of the subject nonlinear waves which arise
in various branches of natural sciences such as fluid
dynamic, plasma physics, nonlinear optics,
electromagnetic waves, propagation of light in fibers and
many more. In this sense, the study of nonlinear partial
differential equations NLPDEs and there analytic and
numerical solutions has great relevance. Some of these
equations are solved numerically using Hirota[1] method
and scattering inverse method[2], the use of these methods

is not easy task, therefore, new different computational
methods used to obtain exact solutions such as the tanh,
the generalized tanh, the extended tanh, the improved
tanh-coth methods[3-7] all these methods are based on the
reduction of the original equation into equation with fewer
dependent or independent variables using the traveling
wave solution. The strong parabolic second order
nonlinear partial differential equation and the most well
understood is the  viscid Burger’s equation which  a rises
in the theory of shock waves, turbulence  problems and
continuous stochastic processes. It has many different
application   as   modeling   of   water  in  unsaturated  oil,
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elasticity statics of flow problems, gas dynamics, etc. (see
for example, Cordero et al.[8] and the references therein),
the nonlinear Burger equation can be linearized into the
heat equation by the interesting Hopf-Cole transformation 
this  transformation  named  after  Eberhard  Hopf,  in
Hopf[9] and Cole[10] also more researches directly related
to transformation has been substantial. In this study, we
introduce a new different  scheme for solving Burger’s
equation by applying Hopf-Cole transformation method
that transform Burger’s equation into linear heat equation
coupling  with  Runge-Kutta  of  6th  order  method  were
the transformed heat equation is reduced into a simple
system of ODEs by using MOL, we test our proposed
method in numerical illustrated examples and the results 
compared with exact solution of one of the well-known
method (DTM), clearly that there are a variety methods
such as Adomain Decomposition Method (ADM), see
(Adomian), (Adomian)[11, 12], Vibrational Iteration Method
(VIM)[13], Tanh and first integral method[14], Differential
Transform  Method  (DTM)[15]  etc.,  these  method
provide the solutions in infinite series form and the
obtained series may be converge to closed form solution
if the exact solution exists. This study focus on the most
popular (DTM) that is used for comparison with the
proposed method. This comparison is important to
investigate the quality and efficiency of the applied
numerical scheme.

Burger’s equation: Let us consider aone-dimensional
quasilinear parabolic convection-diffusion Burger’s
equation with viscosity and without external force as an
initial value problem:

(1)t x xx

0

u u u v u ,   v 0, t 0,  x R

with IC  u(x,0) u (x)    for  x R

     
  

which is known viscid Burger’s equation this equation is
obtained as a result of combining linear diffusion with the
nonlinear wave motion and regard the simplest model for 
diffusive wave in fluid dynamics, the simplest forms of
the nonlinear advection term μ μx causes either a shocking
up effect or rarefaction, so, the presence viscous term
helps to break the wave and the term vuxx is a dissipation
term similar to that occurring in the heat equation where
v = µ/ρ is an arbitrary parameter (v is kinematic viscosity
at sonic condition μ is the viscosity of fluid and is ρ the
density) also the parameter ν related to the Reynolds
number there is an important connection between Eq. 1
when the viscosity parameter tends to zero this fact will
be studied in more detail under the title vanishing
viscosity  approach,  in  this  case  Eq. 1  is called inviscid

Burger’s equation. The properties of Eq. 1 have been
studied by Hopf[9], the Burger’s equation without viscosity
is the simplest nonlinear example of a conservation law
that appear in studies of  gas dynamics, traffic flow and
acoustic transmission. In Physics and Mathematics, the
exact solutions of Eq. 1 is still important topic, thus,
seeking for new methods[16-19], for this purpose, one of the
numerical methods is studied by Runge-Kutta of 6th
order, see[20]. In this study, we introduce a new technique
for numerical solution of Burger’s equation by coupling
Hopf-Cole Transformation method (H-CT) which
converts Burger’s equation into  heat equation coupling
with Runge-Kutta 6th order method (RK6) and the help of
Method of Line (MOL)  that transpose the converted heat
equation into a simple system of ordinary differential
equations this will be presented in the next section.

Coupling Hopf-Cole transformation with Runge-Kutta
6th order method: In this study, we give a brief
description of the Hopf-Cole transformation, this
transformation is a trick discovered independently by
Eberhard Hopf[9] and Cole[10], they showed that the
transformation is generally recognized as a powerful
approach which maps the solution of the nonlinear partial
viscous Burger’s equation to linear heat (diffusion)
equation, therefore, we start with the transformed  linear
heat equation (Cauchy Problem):

(2)x

0

0

t xx

1
u (y)dy

2v

0

w v w ,  v 0

w(x,0) w (x) e


  

   

Now introduce the simplest nonlinear transformation:

(3)w e

where n = n(x, t), solving (Eq. 3) for n implies:

(4)
1

ln w,w(x, t) 0  


Equation 4  represent the common Hopf-Cole
transformation, calculate the following terms by chain
rules:

t t  x x  xx

2 2
xx x

w  e ,w  e , w

[  ] e

 



      

    

substituting  this expressions in Eq. 2 yield

(5)2 2
t  xx xe v[  ] e        
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which simplifies to:

(6)2
t  xx xv v     

Equation 6 known as the potential Burger’s equation 
the second step in this process is to differentiate (Eq. 6)
wrt x the result is:

(7)2
tx xxx x xv 2  v      

Let, us introduce a potential function n define by:

(8)x

1
u and

2v
    

(9)
1

 u(x,t )dx
2vhence w(x, t) e





and the initial condition on Eq. 1 therefore, must be
transformed by using (Eq. 9) into:

(10)
x

0

1
 u(y,0)dy

2v
w(x,0) e

 


then Eq. 7 is converted into Burger’s Eq. 1. So, we got to
the famous Hopf-Cole transformation:

(11)x
x

( 2v ln w) w
u 2v

x w

 
    



which reduce viscous Burger’s Eq. 1 into the heat Eq. 2,
Olver[21]. The next step related with the Method of Lines
(MOL) that approximate the  heat Eq. 2 to a simple
system of ordinary differential equations, the idea of
MOL is to discretized the spatial derivative only with an
algebraic expression using central finite differences,
typically the time is remain:

(12)2i 1 i i 1
xx 2

w 2w w
w O(h) ,1 i M

(h)
  

   

where, i is an index designating a position along a grid in
x, h>0 is the spacing in x along the grid which has M
points and O(h)2, represents the truncation error,
substituting Eq. 12 and 2 gives a system of m
simultaneous ordinary differential equations of the first
order:

(13)i
i 1 i i 12

dW v
[w 2w w ],1 i M

dt h      

Here, Wt is an approimate function of wi:

(14)i
i2

dW (t) v
Aw (t),  1 i M

dt h
  

where wi(t) = [w1(t), w2(t),...,wM-1(t)]
T, A is the tridigonal

matrix = Trid(1-21), solving the system of ODEs under
given initial and boundary conditions:

(15)
i i

1 1

L L

w(x ,0) g(x )  ,   1 i M

w(0,t) w (x, t) h (t)   at grid i 1

w(L,t) w (x, t) h (t)

   
   
  

by using Runge-Kutta of 6th order with seven stages
method[20]:

(16)
1 0
i i 1 i1 2 i2 3 i3

4 i4 5 i5 6 i6 7 i7

W W h(b K b K b K

        b K b K b K b K ) 

    
  

where:
 

(17)

0
i1 i 0 i

0
i2 i 0 2 i 21 i1

0
i3 i 0 3 i 31 i1 32 i2

0
i4 i 0 4 i 41 i1 42 i2 43 i3

0
i5 i 0 5 i 51 i1 52 i2

53 i3 54 i4

0
i6 i 0 6 i 61 i

K (t ,W )

K (t c h,W ha K )

K  (t c h,W h(a K a K ) )

K  (t c h,W h(a K a K a K ) )  

K  (t c h,W h(a K a K

a K a K ) )

K  (t c h,W h(a K

 

   

    

     

     


    1 62 i2 63 i3

64 i4 65 i5

0
i7 i 0 7 i 71 i1 72 i2

73 i3 74 i4 75 i5 76 i6

a K a K

a K a K ) )

K  (t c h,W h(a K a K

a K a K a K a K ) )











   
 


     
   

It is convenient to specify Eq. 17 by writing the
parameters in an array called  Butcher partitioned tableau.
In the present case the array Fig. 1.

Coefficient of  Butcher RK of  order six with 7 stages: 

0

1 1
     

3 3
2 2

       0      
3 3
1 1 1 1

                  -                        
3 12 3 12
5 25 55 35 15

        -             
6 48 24 48 8
1 3 11 1 1 1

         -      -             
6 20 24 8 2 10

261 33 43 11
1     -            -

260 13 156 

8 32 80
         

39 195 39
13 11 11 4 4 13

             0                                  
200 40 40 25 25 200

which reduce to the equation:
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Fig. 1(a, b): (a) Plot of the uapp.(x, t) and (b) Plot of uexact(x, t) for the Burger’s equation

(18)
1 0
i i i1 i3 i4

i5 i6 i7

h
W W + (13K +55K +55K +

200
 32K +32K +13K )



with the help of Math Lab, get the approximate solution
for the transformed  heat equation, hence, the approximate
solution of the Burger’s problem is obtained using the
transformation Eq. 11.

MATERIALS AND METHODS

Differential  transform  method:  This  method  appear
in different situations such as differential equation(s),
eigenvalue  problems,   approximate  solution  of  a
system of ODEs, the method is firstly introduced by
Zhou[22], associated with the method of lines, the method
can  be  extended  for  solving  system  of  linear  and
nonlinear PDEs, this method leads to an iterative
procedure  for  obtaining  an  analytic  series  solutions  of
functional equations. The basic definition of two
dimensional   differential   transform   is   defined   as
follows:

Definition 1: If u(x, y) is analytic and continuously
differentiable function with respect to x and y then:

(19)
h k

x 0,y 0h k

1 u(x,y)
U(h,k) [ ]

h!k! x y



 




 

where the spectrum function U(h, k) is the transformed
function.

Definition  2:  The  differential  inverse  transform  of  is
U(h, k) defined as:

(20)h k

h 0 k 0

u(x,y) x y U(h,k)
 

 



Combining Eq. 15 and 16, it can be obtained that:

(21)
h k

h k
h k

h 0 k 0

1 u(x,y)
u(x,y) [ ]x y

h!k! x y

 

 




 

From the above definitions, it can be found that the
concept of the two-dimensional differential transform is 
derived from the two-dimensional Taylor series expansion
some of the basic mathematical operations performed by
DTM  can  be  readily  obtained  and  these  are  listed  in
Table 1.

Numerical examples: In this study, the solution of 
Burger’s equation will be investigated by using the
proposed  Hopf-Cole transformation coupling with  the
RK6 order method,  to clarify the accuracy of the present
method. These example are chosen such that the exact
solution can be given by applying DTM.

Example 1: Consider burger Eq. 1 subject to the IC and
Dirichlet homogeneous BCs:

(22)
u(x,0) sin(  x),0 x 1

u(0, t) u(1, t) 0, t>0

    
  

where the exact solution is:

(23)
2 v tu(x, t) e sin(  x)  

By the Hopf-Cole transformation Eq. 11 and 1
transformed into the heat equation:

(24)t xxw v w ,   v  0, t 0,0 x 1    

with the transformed initial condition:

(25)
cos( x) 1

2vw(x,0) e , 0 x 1
 
  

and transformed boundary conditions:

(26)x xw (0, t) w (1, t) 0, t 0  
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Table 1: The fundamental operations of the two dimensional DT
Original function Transformed function

u(x, t) f (x, t) g(x, t)  U(h,k) F(h,k) G(h,k) 

u(x, t) c f (x, t) Uh,k) c F(h,k) wherec is constant

f (x, t)
u(x, t)

x





U(h,k) (h 1)F(h 1,k)  

f (x, t)
u(x, t)

x





U(h,k) (k 1)F(h,k 1)  

f (x, t)
u(x, t)

x





(h+r)!(k+s)!

U(h,k)=  F(h+r,k+s)
h!k!

u(x, t) f (x, t) g(x, t)  (h r)!(k s)!
U(h,k)  F(h r,k s)

h!k!

 
  

f (x, t) g(x, t)
u(x, t)

x t

 


 

h k

r = 0 s = 0

U(h,k)= (h-r+1)(k-s+1)F(h-r +1,s) G(h,k-s+1)

Applying Eq. 12 for (Eq. 24), we obtained a system
of M linear first order differential equation which can be
written in matrix form as:

(27)i
i2

dW (t) v
AW (t)

dt h


for the simple case 1#i#3 the system reduced to:

(28)

1

0 1 2

2
1 2 32

2 3 4
3

i 1 2 3

dw (t)

dt w (t) 2w w
dw (t) v

  w 2w w
dt h

w 2w w (t)dw (t)

dt

                   (t,w ,w ,w )    

 
 

   
       
      

  
 

(29)
1

i 2

3

w2       1         0

WhereA   1       -2        1  and W  w

 0         1        -2 w

   
      
     

using  Runge-Kutta  6th  order  method  with  seven
stages for the system of ODEs Eq. 28 and boundary
conditions:

(30)0 4w (t) w(0, t) 0,   w (t) w(1, t) 0   

and for simplicity, choose v = 0.3, h = 0.25, we get the
approximate solution wi(x, t) given by Table 2. Now,
calculate  the values of uapp.(x, t) at discrete points from
the discrete version of Eq. 11:

(31)i x
app. i

i

(w )
u (x, t) u (x, t) 2v

w
  

Table 2: Exact solution by DTM and the approximate solution by
coupling C-HM with RK6 order  method of example

t-values x exactu (x,t) app.u (x,t)

0.00 0.25 0.707107 0.707107
0.25 0.337296 0.350770
0.50 0.160893 0.174014
0.75 0.0767475 0.086425
1.00 0.0366092 0.043899
0.00 0.50 1.000000 1.000000
0.25 0.477009 0.496060
0.50 0.227537 0.246062
0.75 0.108537 0.121916
1.00 0.0517733 0.059025
0.00 0.75 0.707107 0.707107
0.25 0.337296 0.350770
0.50 0.160893 0.174014
0.75 0.0767475 0.086425
1.00 0.0366092 0.043899

where  can be calculated from the first orderi
i x

w
(w )

x





centered difference formula:

(32)i i 1 i 1
i x

w w w
(w ) 1  i 3

x 2h
  

   


the derivatives  at the end points are0 x 4 x(w )   and   (w )

known, substituting Eq. 32 into 31 conclude equation 
approximate solution  for the burger Eq. 1:

(33)i 1 i 1
i

i

v w w
u ( )  1  i 3

h w
  

  

For comparative study, we have to apply the DTM for
Burger Eq. 1 subject to the initial and boundary
conditions Eq. 22, firstly, we discretizing Eq. 1 for the
spatial first and second derivatives using the centered
differences h>0 is the spacing in x along the grid which
has M points and O(h)2 represents the truncation error:

2366



J. Eng. Applied Sci., 15 (10): 2362-2369, 2020

(34)

2
2i

i 1 i i 12 2

2i i 1 i 1

u 1
[u 2u u ] O(h)

x h
u u u

O(h)
x 2h

 

 


    


     

the system of ODEs of m-1 unknowns is obtained:

(35)i
i2

du v 1
(Au +B(t)) F(t,u)

dt h 2h
 

where:

 and

-2     1       0       0                0

1      -2      1       0                0

A                                         0

                                        

0     0        0     






    
     

u(0, t)

   0

   0
, B(t)

    

   0
  0          1      -2 

u(1, t)

 
   
   
   
    
   
   
       



1 0 2

2 1 3

i

m-1 m 2 m

  u (u u )

   u (u u )

F(t,u )             

            

u (u u )

 
  
 
 
 
  




Applying  the  DTM  and  operations  of Table 1 to
Eq. 35, we get  the recurrence equation:

(36)
1

2 1 2 1 2
1

x x t 0

(k +2)!
(k +1)U(k , k +1) v U(k +2,k )

k !

                               u u
 

 



or

(37)
1 2

1
1 2 1 2

2 1

k k

1 2 1
r 0 s 0

1 (k 2)!
U(k ,k 1) {v U(k 2,k )

(k 1) k !

         (k r 1)U(r,k s)U(k r 1,s)}
 


   



    

then from the initial condition Eq. 22, we have:

(38)
(k)

k k

k 0 k 0

u (0)
U(k,0)x x

k!

 

 

 

therefore, for  we get1 2k ,k 0,1,2,3,....,N

2 3 2

U(0,1) 2!vU(2,0) U(0,0)U(1,0) 0

3!
U(1,1) 3!vU(3,0) 2U(0,0)U(2,0) (U(1,0)) v  

1!
4!

U(2,1) vU(4,0) 3U(0,0)U(3,0) -3U(1,0)U(2,0) 0
2!

  

      

  

2 5 4

5!
U(3,1) vU(5,0) 4U(0,0)U(4,0) -4U(1,0)U(3,0)

3!

2(U(2,0)) 20 v 4 

6!
U(4,1) vU(6,0) 5U(0,0)U(5,0) -5U(1,0)U(4,0)

4!
5U(2,0)U(3,0 0

1 2!
U(0,2) { vU(2,1) U(0,1)U(1,0)-U(0,0)

2 0!
U(1,1)} 0

1 3!
U(1,2) { vU

2 1!

  

   

  



 





5 4 3

(3,1) 2U(0,1)U(2,0)

-2U(0,0)U(2,1) 2U(1,0)U(1,1)}

60 v +18 v +

1 4!
U(2,2) { vU(4,1) 3U(0,1)U(3,0)-

2 2!
          3U(0,0)U(3,1) 3U(1,0)U(2,1)

                                     3U(2,0)U(1,1)} 0



 

  

 


 

In the same way, the rest of components were
obtained by using Eq. 37, substituting the above quantities
in Eq. 38, the approximate infinite series solution for each
x and t) is:

1 2

1 2

k ku(x,t)= U(k ,k )x t1 2

k =0k =0

 



 

3 3 5 5x x 13 5 3( x + , , )+( vx+ vx
6 120 6

1 1 17 5 5 2 7 2 3( v)x ( v x ( v )x +
120 2 12
1 1 19 2 5 2 7 3 9 3 3v x , , )t +( ( v )x+ v x

240 6 36
15 5 51 1 ( v )x11 5 13 5 3 5( ( v )x+ v x , , )t , ,

120 720 144

+, ..., )t+

+

00
1 1 12 4 2 2 6 3 3(1 vt v t v t
2 6 2

 
      

   

     


        

      

 
2

8 4 4v t
4

3 3 5 51 x x10 5 5v t , , )(πx + +, , )
120 6 1

 v te sin(

2

 x)

0



 
    





  

by substituting some values, we get the results of exact
solution which we will compare with proposed numerical
method given by Table 3 and shown in Fig. 1.

Example 2: Consider Burger Eq. 1 subject to the IC and
Dirichlet homogeneous BCs:

(39)
 sin(  x)

u(x,0) 2v ,0 x 1
3 cos(  x)

u(0, t) u(1, t) 0, t 0

       
   
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Fig. 2(a, b): (a) Plot of the uexact(x, t) and (b) Plot of for the uapp.(x, t) for the Burger’s equation example 2

Table 3: Exact solution by DTM and the approximate solution by
combine C-HM with RK6 order method of example 2

t-values x exactu (x,t) app.u (x,t)

0.00 0.25 0.11984800 0.119848
0.25 0.09771780 0.1051120
0.50 0.07903900 0.0882470
0.75 0.06350330 0.0722290
1.00 0.05073920 0.0582640
0.00 0.50 0.2094400 0.2094400
0.25 0.16364400 0.1690050
0.50 0.12786200 0.1345790
0.75 0.09990450 0.1067090
1.00 0.07805970 0.0844940
0.00 0.75 0.1937687 0.1937687
0.25 0.14183500 0.1384070
0.50 0.10560900 0.1032440
0.75 0.07959180 0.0789830
1.00 0.06051250 0.0613060

where the exact solution is:

(40)

2

2

 v t2v  e sin(  x)
u(x, t)

 v t3 e cos(  x)

  


  

By Hopf-Cole transformation Eq. 11 and 1
transformed into the heat equation:

(41)w v w v 0.1, t 0,  0 x 1t xx    

with the transformed initial condition:

(42)
3 cos(  x)

w(x,0) , 0 x 1
4

 
  

and transformed boundary conditions:

(43)w (0, t) w (1, t) 0, t 0x x  

We will do the same work as in example 1 ,we will
get the results given in Table 3 and shown in Fig. 2.

CONCLUSION

The Hopf-Cole transformation method generally
recognized as a powerful approach to transform the
Burger’s equation into the heat equation, combine with 
Runge-Kutta of order 6th method and the help of method
of lines gives a suitable numerical method (the new
proposed technique), the computed results with the use of
this technique of the illustrate example show that this
approach gives the required accuracy compared with
exact solution by using differential transform method. As
a future work, this proposed method can be applied to a
system of Burger’s equations  if the condition of potential

symmetry  is satisfied.
u v

x y

 


 
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