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Abstract: There are many uses for approximation using
neural networks including astronomy, image processing
and robots, this is due to its ease of use in approximation.

INTRODUCTION

In recent years, many researchers have studied the
issue of approximation using neural networks. There have
been many research papers on the possibility of
approximation using neural networks which we call
density problem. For more you can read™™. All
researchers in this research focused on estimating the
degree of approximation of neural networks. The more
complex issue is complexity problem how to determine
the number of neurons necessary for the appropriate
approximation. Research has been conducted to study the
relationship between the degree of approximation and the
counting of neurons in the hidden layer of the neural
network. From this study, article® which developed a
work of? and gave a way to find a neural network with a
single hidden layer using the step function in the neurons
and presented a direct theorem about the error of the best
approximation. By studied approximation using neural
networks in sigmoidal activation function where he
presented a direct theorem for approximation using neural

networks whose inputs were real numbers using step
functions. There have recently presented important facts
about the L, p<1 approximation for more read***, they
studied the approximation using neural networks of
functions in smooth classes and of error rate c/n where the
number of neurons in the hidden layer.

In this study, we presented direct estimates
of the upper bound for the degree of approximation using
feed forward neural networks with one hidden layer and
linear output. That is we have studied the complex
problem of neural networks approximation which made us
present a upper bound approximation method and
identified the number of neurons in the hidden layer
and that in terms of the first order modulus of smoothness
for functions in the L, spaces, it mean, we presenta kind
of Jackson’s approximation-theorem. The rth symmetric
difference of f along direction h is given by Johnen and
Scherert®,

ADF(x) = Z:ZO({)(fl)if(x+(%f ih)
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In terms of A;f(.) the r-th modulus of smoothness of f is
defined by Johnen and Scherer™!:

o, (f. 1), = SuPoqs [W7F O],

The main results: In this section, we introduce our main
results begin with:

Theorem 2.1: Let ¢ is bounded, monotone and odd
trigonometric real function. If feL [a, b] then for any
natural number neN there exists one hidden layer neural
network satisfies:

N, (x)=F(x)], <c(p)o(f, 8),

Proof: Define N,: [a, b]-R, as:

where parameters ¢;’s and w;’s are define as following:
¢, =f(a)-> c@(wa+6,). Fori<i<n, we get

2nd,

6= (1)~ (x,1)), w, =1 g =

b-a

(% +xi)

Define a partion for [a,b] consists of notes of length b-a/n
as:

a=X, <X <X, <, ..., <X, =h, letm = sup, _, F(x)and
d, = @’(m—mj
2n

According to the choice of ¢, we have N,(a) = f(a).
Also, we have -m<a(x)<m, for any real number x, we fix
m. For any X€[a, b] there exists jeN and 0<j<n, such that
X€[X;,, X;] that note that:

N,(x)=f(a)- iciQ(wia+6i)+ ic@(wixﬂéi)

i=1 i=1

=f(a)+ éci (D(wx+6,) - D (w;a+,))

:f(a)+§$(f(xi)—f(xH)(Q(Wixwi)—@(wia+ei))

Suppose E;(x) = a(w;x+6,) then:

n

N, () = F(2)+ D= (F (%)~ (x2))(E, (%)~ E, (2))

=2m

—F(a)+ 3 L (F (%)~ (%)) (E (X)-E, (2)) + ——

i~lom 2m
1

(f (x;)-f (XH))(EJ (x)-E, (a))J’ZLME
(f (%) =f (%) (Ei (x) - (a))

For i>j, we have x<x;<X;,. So, the properties of
o give 0<E;(x)-E;(a)<E(x))-E;(a) <Ei(x;..)-Ei(a) <Ei(x;.,)-m
= o(WX;+0,)+m = o(-d.)+m = -o(2™(m-m/2n)) = m/2n.
So,

1

S (10~ (x02) (B (X) -, (a)

ZLM i(f (x)-f (Xi—l))
S ()= (%))

<

p

p(E.(X)*E. (2))<
()

. L(%lgu(f ()= (xi)],

T 2m

<

1 n

(FO)~f(x))],

so(p)m[f, %]

p

Hi(f (x;)-f (XH))(EJ (x)-E;(a)) )

2m

s%“f(xj)—f

(ol G =e(prof 1. 20% |

And:
il )0 (E 000
[
%Zi:l(f (Xi)_

f(x4)E; (X)—E; (a) —2m)+(f (XH)—f (a))
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For 1<i<j, we have X;<X;,<x and so, 2m>E;(x)-
Ei(@)>Ei(x)-Ei(Xx.)) = (d)-o(-d,) = 2m-m/n which
implies [|E;(x)-E;(a)-2m||,<m/n. So:

N, () =T (x,3) = 5= A (F06) - F (x,.)

(E.(x)-E,(a)-2m)+- (1 (xj)_f(xH)j
[Ei (x)-E, (a)+zin:,ﬂ$f(xa) ~(fF(x2)(E(0)-E, (a))

Consequently,

)= s, <000) £l )1 050 00

)=2m) (1 (%) (x,2)) (8 (), (2)) +
.”,+2if(x.) f(x.0)(E.(0)-E, @) <
c(p) bn 1H E(x E (a)- 2m H
1)1 (5D (8, 00y @) + Iiﬁ(f(xi)—

b-a

(6 0)-£@)], =e0e{1. 2]

Using the direct theorem:
fro0-#(x,.)] = of 1,22
P

We have:
[N, () =f (x)], <N, (x

<c(p)o (f ij

n

f (XH)HP +Hf (x)-f (XH)H

P

Theorem 2.2: Let o is bounded, monotone and odd
trigonometric real function. feLip(a), ae(0, 1) if and only
if there is one hidden layer neural network N,, satisfying:

N, (x)-F (x

I, =c(P)(®)

where, 8= ba .
n
Proof: Define N,:[a, b]-R, as:

N, (x) =c0+zn:ci®(wix +6,)

i=1

where parameters ¢;’s and w;’s are define as following:
c, =f(a)-> c(wx+6,)

For 1<i<n, we get:

2nd nd

¢ =——(F(x)-fF(xi1)) W, =00 = o

o —(X;+X4)

Let m = sup,z2(X) and d, = o™(m-m/2n).

since, feLip(a), then (f, ), = O()" [N: (x)f (x)], = o(5")

Let feLP,,, 0<p<1, then [N, (x)-f(x)|, <c(p)(3)".
We must prove that feLip(a),. Now, |[EN,[f]-f,
| ,<c(p)(8) and by using Theorem 2.1:

IN: (0)-F ()], <c(p)e(f, 8)

Then:
e(p)olf, 8), <c(p)(5)

o(f, 8),<0(3)

Therefore, the definition of Lipschitian function is
conclude we get.

Examples 3: In this section let us demonstrate our

theorems.

Example 3.1; Cao et al.l’™: Let f(x) =sin x, xe[0, =].
Choose o(x) = 2/n tan™x, xeR. It is clear feLip,(1) and
also we have f (a) = f(0) = f(b) = 0. Using the properties
of the tan™x, if m = 1, 2™(x) = tan(n/2) x and d, = tan
(m/2(1-1/2n)). So,

- i(f (x;)-f (XH))

1[. in (i-1)nJ
C; = —| sin—-sin——
2 n n

0, = -n—d"(2a+(2i-1)E)
b-a n

M(mzi-ﬂ -

= —tan[g(l—%)](m—l)
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2nd 2n m 2
w, = L =—tan| —|1-
b-a b 2\ 2n

c, =f (a)-icig(wia-'—ei)

o
i=1

= 0-2:’1;{sini:-sin @J%arctan ((2-2i)tan [g [1%}}

So, we can define the following neural network having
one hidden layer and n neural:

N, (x) = co+zn:ci® (w;x+6;), x€[0, 7]
From Theorem 2.2, we get:
. T *
[N, (x)-sin x| so(p)[ﬁj

Example 3.2: If our target function is f(x) = cos x,
xe[0, ] we choose the sigmoidal activation function z(x)
= 2/m tan™x, xeR. And f(a) = cos (0)= f(b) = cos(r) =1, m
= supe(x) = tan (n/2)x:

d, = tan [E)x(l-i)
2 2n

0, = -%[2a+(2i-1)(%jj
= W(n(zi-@ﬁ

¢, =f (a)_zcig(wia+ei)

i=1

2

= 1-2?_&[005? -CoS (I?nj ;arctan ((1-2i) tan (g [12%))

So, we can define the neural network approximate as:

N, (x) =¢, +zn:c,®(w,x +6,), x€[0, n].

i=1

From Theorem 2.2. we get:
T
IN, (x)—costp SC(p)(E)a

CONCLUSION

The main aim of this study is to introduce a
saturation problem for the approximation of function
in L,,p<1 quasi normed spaces using neural network
with trigonometric activation function, in a constructive
approach.
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