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Abstract: Vibration signals are vectors for several pieces
of information relating to the operating status of rotating
machines. The storage and transmission of these signals
poses problems of space and bandwidth. One solution to
this problem is to compress these signals. In this research,
we compress and decompress the vibration signals formed
by the variations of vibration amplitudesof a ball bearing.
We used an algorithm based on the Walsh-Hadamard
Transform (WHT). The coefficients obtained are coded
according to Huffman coding. An evaluation of the
performance of this algorithm is made on the basis of
SNR, MFD, MSE, PRD and CR measurements. Taking
this assessment into account, the results of the method are
qualitatively and quantitatively very encouraging.

INTRODUCTION

Maintenance is an important activity in companies.
This activity tends to evolve to meet the needs of
responsiveness and cost. A particular development
concerns the way of understanding the phenomena of
failure. Failure prediction is essential for predictive
maintenance  because  of  its  ability  to  prevent  failures
and  maintenance  costs.  Vibration  analysis  is  one  of
the  tools  for  predicting  failures  in  moving  systems  by
the production  of  data  that  relate  the  state  of  the 
system. The  acquired  data  are  then  the  media  for 
several pieces  of  information.  This  information  takes 
up a lot  of  space  and  its  transmission  takes  a  lot  of 
time. The  aim  of  our research  is  to  propose  an 
algorithm for  the  compression  of  vibration  signals  
resulting from  the  operation  of  a  ball  bearing.  The 
parameters of interest during acquisition are vibration
amplitude, speed and motion acceleration. In this
research, we are interested in the variation of the
amplitude of the vibration.

Several studies were carried out to monitor the
evolution of vibration amplitudes while others aimed at
extracting information contained in vibration[1]. In the
literature, however, there is a scarcity of work on the
compression of vibration data. Several signals were
compressed. Yassine compressed the images using a 
coder  based  on  progressive  coding  of  data[2]. The
coder  used  is  EZW  (Embedded  Zero  tree  Wavelet).
The  compressed  images  were  biomedical  images.
Kekre et al.[3] compressed the color images using an
algorithm based on the Discrete Wavelet Transform
(DWT).   These   images   were   color   photographs.
Barabi et al.[4] recorded and compressed images resulting
from an endoscopy examination to facilitate their wireless
transmission. Ishiguro Takehiko and Jay KIinuma
compressed video signals to improve the transmission of
color television images[5]. Amine NAIT-ALI studied
biomedical data to improve the possibilities of their
compression[6]. Saada and Zahra implemented an
algorithm for compressing genome data[7]. The aim of this
algorithm was to reduce the size of DNA information.
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Fig. 1: Compression/decompression chain

Singh et al.[8] proposed an ECG data compression
algorithm using the SPIHT (Set partitioning in
hierarchical trees) encoder[11]. Prılepok compressed the
EEG signal. The EEG signal is a complex signal; its
compression makes it easier to understand. Indeed, this
signal is the support of several brain activities. In 2019,
Oyobe et al.[9] used the Walsh-Hadamard transform to
compress the EMG signals. In the literature, vibration
signal compression algorithms are rare if not almost non-
existent, despite the well-known interest of compression
in the storage and transmission of large data. To date, a
compression algorithm involving the Walsh-Hadamard
Discrete Transform (DWHT) as well as coding by the
Huffman method, despite its potential has never been
tested for vibration signal compression. The interest of
this work is therefore justified by proposing an algorithm
of compression of the vibratory data by the use of this
method. This study consists of three parts: state of the art,
methodology, analysis and interpretation of results.

State of the art
Generalities on the compression: The purpose of
compression is to reduce the size of the data taking into
account the quality of the reconstructed data. There are
two types of compression: on the one hand, compression
without loss of information, we are talking about
reversible compression and on the other hand,
compression with loss of information in this case,
irreversible compression. In lossless compression,
decoded  information  is  the  perfect  image  of the
original information[10]. Its disadvantage is its low
compression rate, especially when it comes to image
compression.  However,  by  means  of  lossy
compression, high compression rates can be obtained but
at the expense of the quality of the reconstructed signal[11].
The general diagram of compression follows the principle
of Fig. 1.

Figure 1 shows the general data compression
decompression procedure. The original signal goes
through the encoder. In the case of lossless compression,
the original signal is simply encoded and at the output a

binary train is obtained. In the case of lossy compression
in the encoder the original signal is decomposed by an
orthogonal transformation. In this new space the
transformed signal has a better representation and is
sufficiently bleached. The coefficients obtained are
quantified and coded. At the output of the encoder we get
a binary train. The decompression follows this algorithm
but in reverse.

In the literature, there is several data compression
works based on orthogonal transforms. Several of them
used DWT, DCT, KLT and WHT[12, 13]. Orthogonal
transformation methods are known to be very effective in
bleaching data. This remarkable efficiency is due
essentially to two properties which are the parsimony of
representation and the whitening of data[14]. The DCT, for
example by bringing the signal into the frequency space,
removes frequency redundancy. The transformation of
Karhuen-Loeve on its side reorganizes the data in the
same space but following new axes; this improves the
compaction of these data. Thus, the Walsh-Hadamard
transform will be used for this research.

Evaluation parameters: The compression ratio is an
important parameter in the quantitative evaluation of a
compression algorithm. It is defined in by:

(1)
size of  compressed file

RC 1-
size of  original file

  
   

  

It is the main criterion for evaluating a compression
algorithm. However, when evaluating a lossy
compression method, the qualitative parameters must be
associated with this quantitative parameter. The
qualitative compression parameters allow to give an
opinion on the quality of the reconstructed signals. The
most commonly used quality measure is Mean Square
Error (MSE) and is defined by:

(2  
N

2

0 r
n 1

1
MSE = s n - s (n)

N 


S0(n) = The original signal
Sr(n) = The reconstructed signal
N = The number of samples of the signal

The most recommended measurement is the Signal-
to-Noise Ratio (SNR):

(3)
2
x
2
e

σ
SNR 10log

σ

 
  

 

With σx
2 represents the power of the original signal

and  represents the power of the error. In[15] and two other
criteria for assessing the reconstructed signal quality are
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presented: the distortion of the mean frequency MFD
(Mean Frequency Distortion) and the PRD (Percent Root 
mean  square  Difference)[15]. They are defined by:

(4) 

2

orig recons

orig recons

F F
MFD

max ,F

-

F

 
 
 
 

In Eq. 4, Forig and Frecons represent the average
frequency calculated respectively on the original signal
and on the reconstructed signal:

(5)
  
  

2N-1

n 0
2N-1

n 0

ˆs n -S(n)
PRD = ×100%

ˆs n -S(n)








Where:
s(n) = The original signal
s(n) = The reconstructed signal
N = The number of points of the original signal
μ = The CAN reference value used for data

acquisition

MATERIALS AND METHODS

Compression/decomposition procedure: The
compression/decompression   scheme   implemented  in
our algorithm is given in Fig. 2. Figure 2 shows the
compression/decompression scheme we propose. In this
scheme the vibratory signal is transformed by the Discrete
Walsh-Hadamard Transform (DWHT). This
transformation reduces redundancy in the frequency
plane. The coefficients obtained are quantified to limit the
number of bits to be transmitted. The results of this
quantification are coded according to the Huffman
algorithm. We get a binary train. Signal reconstruction is
done by following the same steps in the opposite
direction. 

Walsh-hadamard transform: The Walsh-Hadamard
transform is a non-optimal and orthogonal transformation.
It decompse a s(t) signal into a set of orthogonal and
rectangular functions called Walsh functions. The Walsh
Wn(t) family of functions allows to approach any finite
energy signal over an interval [0; T [.These functions
form a complete set. This allows to achieve any desired
precision by adapting the number N of the elements of the
development. These functions take only +1 or 1 values by
changing n times of sign in the open interval [0; T [.Using
a vector with all values equal to (+1) or (-1) significantly
reduces the computational complexity of the algorithm.
The WHT has a fast decomposition algorithm with a
calculatory cost O(Nlogn)[16, 17]. The analytical
determination of these functions is governed by Eq. 6:

(6) 
r-1

j
n j

j 0

t
W t = Signe cos n 2 π

T

  
  

  


Fig. 2: Proposed compression algorithm

Where:
r = The smallest power of 2 greater than n
nj = The status of the jth bit of binary code of n

(7)
r-1

j
j

j 0

n = n 2



The Walsh-Hadamard Transformation is the simplest
of the transformations to be implemented easily. It
performs a linear and involutive operation. In addition, it
is orthogonal which allows its use in compression
algorithms. Recursively, we define a first transformation
1x1 through a H0 matrix which is the identity matrix with
a single element 1. We then define Hm for  thanks to the
relationship (3):

(8)m-1 m-1
m

m-1 m-1

H H1
H

H -H2

 
  

 

The decomposition/reconstruction by the WHT
transform for a s(t) signal of length N is defined by Eq. 4
and 5, respectively:

(9) 
N-1

n i
i 0

1
a = s WAL n,i ,n =1,2,….,N -1

N 


(10) 
N-1

i n
n 0

s = a WAL n,i ,i = 1,2,….,N -1



The resulting WHT coefficients are coded according
to Huffman’s coder.
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RESULTS AND DISCUSSION

The method presented in this study has been
implemented on a real vibratory signal. These are records
of the vibration monitoring of a ball bearing. The
reference for this ball bearing is SKF7309B. The
acquisition system consists of a portable collector,
VIBROTEST 60 and an accelerometer. The signals were
acquired with a sampling frequency of 2 kHz. The
acquisition device model uses a 12-bit CAN for scanning
acquired data. The vibration parameter chosen for this
work is the amplitude variation.

Since, the vibration signal is very little known in the
literature of data compression, we first represented the
histogram of vibration amplitude values. This histogram
allows a visual assessment of the level of data
redundancy. It is shown in Fig. 3 and 4.

Figure 3 is obtained by constructing the histogram of
the vibration amplitude signal of the ball bearing. This
histogram shows that the distribution of the signal follows
an almost normal law. The redundancy of the data can be
observed with regard to the shape of the histogram. Note
that the largest amount of data is the one with an
amplitude between -0.5 micrometer and +0.5 micrometer.
The data are highly correlated, this implies the possibility
of efficient compression of this signal. Correlated signals
lend themselves well to compression. In this research, we
compressed/decompressed the vibration signals
(amplitude variation) using the Discrete Walsh-Hadamard
Transform (DWHT). The results of this compression/
decompression are recorded in Table 1.

The results presented in Table 1 show the qualitative
and quantitative differences between the different
reconstructed signals for different quantization
accuracies.The two quantization steps give the same value
of the Mean Frequency Distortion (MFD) of 0.005%. This
very small MFD value indicates that the method is stable 

in frequency. The compression ratio improves at the
expense of the reconstructed signal quality. According to
the results presented in Table 1 for an accuracy of one
hundredth the compression ratio is better (96.87%).
However, taking into account the fact that the processing
of this signal helps to the maintenance of industrial
systems (therefore very sensitive) and the increase in the
mean square error (reduction of the reconstructed signal
quality), we can chose the algorithm at the lower
compression rate and at the best reconstructed signal
(78.21%). The role of the DWHT in this algorithm is to
perform the whitening of this data.  This  whitening  is  a

Table 1: Evaluation of the DWHT algorithm
Quantization
step MSE SNR PRD MFD (%) RC (%)
E-2 23E-04 18.98 11.22 0.005 96.87
E-3 2,11E-05 39.26 0.01 0.005 78.21

Fig. 3: Vibration amplitude distribution histogram

Fig. 4(a-c): Comparative representation of signals: original, reconstructed and error
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first step of compression by removing data redundancy in
the frequency plane. After quantization of coefficients,
Huffman coding is used as a second step of compression
that optimizes the first step. The results of
compression/decompression of the proposed algorithm are
shown in Fig. 4. 

The result of compression/decompression by this
method is evaluated by the compression parameters, the
values of which are: SNR = 39.26dB, MSE = 2.11E-05,
MFD = 0.005% and RC = 78.21%. The reconstruction
error of the proposed method is a constant value and
equals zero; this confirms from an objective point of view
the good quality of the reconstructed data. Its compression
ratio is high.

CONCLUSION

In this study, we presented a method for
compressing/decompressing vibration data. It is apparent
from Table 1 that the proposed method, qualitatively and
quantitatively gives the good results. Typically, the
compression by transformation methods has a non-zero
reconstruction error. With vibratory signals, good
quantization accuracy cancels this error. Thus, the results
obtained by this algorithm are encouraging with regard to
objective and subjective criteria (SNR, MSE, MFD, CR
and visual observation). This method has a moderate
computational load because it uses a linear transformation.
The compression rates are high considering that the
reconstruction is almost perfect. However, after a state-of-
the-art on data compression, we found that no
compression work existed on vibration signals. This
absence offers an additional line of research on vibration
signal compression. This allows us to optimize the storage
space for further study.
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